This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category ( SetCat2o ) is thin. A special case of setcthin . (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setc2othin | ⊢ ( SetCat ‘ 2o ) ∈ ThinCat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | ⊢ ( ⊤ → ( SetCat ‘ 2o ) = ( SetCat ‘ 2o ) ) | |
| 2 | 2oex | ⊢ 2o ∈ V | |
| 3 | 2 | a1i | ⊢ ( ⊤ → 2o ∈ V ) |
| 4 | elpri | ⊢ ( 𝑥 ∈ { ∅ , { ∅ } } → ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) ) | |
| 5 | 0ex | ⊢ ∅ ∈ V | |
| 6 | sneq | ⊢ ( 𝑦 = ∅ → { 𝑦 } = { ∅ } ) | |
| 7 | 6 | eqeq2d | ⊢ ( 𝑦 = ∅ → ( 𝑥 = { 𝑦 } ↔ 𝑥 = { ∅ } ) ) |
| 8 | 5 7 | spcev | ⊢ ( 𝑥 = { ∅ } → ∃ 𝑦 𝑥 = { 𝑦 } ) |
| 9 | 8 | orim2i | ⊢ ( ( 𝑥 = ∅ ∨ 𝑥 = { ∅ } ) → ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) ) |
| 10 | mo0sn | ⊢ ( ∃* 𝑧 𝑧 ∈ 𝑥 ↔ ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) ) | |
| 11 | 10 | biimpri | ⊢ ( ( 𝑥 = ∅ ∨ ∃ 𝑦 𝑥 = { 𝑦 } ) → ∃* 𝑧 𝑧 ∈ 𝑥 ) |
| 12 | 4 9 11 | 3syl | ⊢ ( 𝑥 ∈ { ∅ , { ∅ } } → ∃* 𝑧 𝑧 ∈ 𝑥 ) |
| 13 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 14 | 12 13 | eleq2s | ⊢ ( 𝑥 ∈ 2o → ∃* 𝑧 𝑧 ∈ 𝑥 ) |
| 15 | 14 | rgen | ⊢ ∀ 𝑥 ∈ 2o ∃* 𝑧 𝑧 ∈ 𝑥 |
| 16 | 15 | a1i | ⊢ ( ⊤ → ∀ 𝑥 ∈ 2o ∃* 𝑧 𝑧 ∈ 𝑥 ) |
| 17 | 1 3 16 | setcthin | ⊢ ( ⊤ → ( SetCat ‘ 2o ) ∈ ThinCat ) |
| 18 | 17 | mptru | ⊢ ( SetCat ‘ 2o ) ∈ ThinCat |