This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category ( SetCat2o ) is thin. A special case of setcthin . (Contributed by Zhi Wang, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | setc2othin | |- ( SetCat ` 2o ) e. ThinCat |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd | |- ( T. -> ( SetCat ` 2o ) = ( SetCat ` 2o ) ) |
|
| 2 | 2oex | |- 2o e. _V |
|
| 3 | 2 | a1i | |- ( T. -> 2o e. _V ) |
| 4 | elpri | |- ( x e. { (/) , { (/) } } -> ( x = (/) \/ x = { (/) } ) ) |
|
| 5 | 0ex | |- (/) e. _V |
|
| 6 | sneq | |- ( y = (/) -> { y } = { (/) } ) |
|
| 7 | 6 | eqeq2d | |- ( y = (/) -> ( x = { y } <-> x = { (/) } ) ) |
| 8 | 5 7 | spcev | |- ( x = { (/) } -> E. y x = { y } ) |
| 9 | 8 | orim2i | |- ( ( x = (/) \/ x = { (/) } ) -> ( x = (/) \/ E. y x = { y } ) ) |
| 10 | mo0sn | |- ( E* z z e. x <-> ( x = (/) \/ E. y x = { y } ) ) |
|
| 11 | 10 | biimpri | |- ( ( x = (/) \/ E. y x = { y } ) -> E* z z e. x ) |
| 12 | 4 9 11 | 3syl | |- ( x e. { (/) , { (/) } } -> E* z z e. x ) |
| 13 | df2o2 | |- 2o = { (/) , { (/) } } |
|
| 14 | 12 13 | eleq2s | |- ( x e. 2o -> E* z z e. x ) |
| 15 | 14 | rgen | |- A. x e. 2o E* z z e. x |
| 16 | 15 | a1i | |- ( T. -> A. x e. 2o E* z z e. x ) |
| 17 | 1 3 16 | setcthin | |- ( T. -> ( SetCat ` 2o ) e. ThinCat ) |
| 18 | 17 | mptru | |- ( SetCat ` 2o ) e. ThinCat |