This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways of expressing "at most one" element in a class. (Contributed by Zhi Wang, 19-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mo0sn | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv | ⊢ Ⅎ 𝑧 𝑥 ∈ 𝐴 | |
| 2 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝐴 | |
| 3 | eleq1w | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴 ) ) | |
| 4 | 1 2 3 | cbvmow | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ∃* 𝑧 𝑧 ∈ 𝐴 ) |
| 5 | neq0 | ⊢ ( ¬ 𝐴 = ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) | |
| 6 | 5 | anbi1i | ⊢ ( ( ¬ 𝐴 = ∅ ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ↔ ( ∃ 𝑧 𝑧 ∈ 𝐴 ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ) |
| 7 | df-eu | ⊢ ( ∃! 𝑧 𝑧 ∈ 𝐴 ↔ ( ∃ 𝑧 𝑧 ∈ 𝐴 ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ) | |
| 8 | eu6 | ⊢ ( ∃! 𝑧 𝑧 ∈ 𝐴 ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) | |
| 9 | 6 7 8 | 3bitr2i | ⊢ ( ( ¬ 𝐴 = ∅ ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) |
| 10 | dfcleq | ⊢ ( 𝐴 = { 𝑦 } ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑦 } ) ) | |
| 11 | velsn | ⊢ ( 𝑧 ∈ { 𝑦 } ↔ 𝑧 = 𝑦 ) | |
| 12 | 11 | bibi2i | ⊢ ( ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑦 } ) ↔ ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ { 𝑦 } ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) ) |
| 14 | 10 13 | sylbbr | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) → 𝐴 = { 𝑦 } ) |
| 15 | 14 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝐴 ↔ 𝑧 = 𝑦 ) → ∃ 𝑦 𝐴 = { 𝑦 } ) |
| 16 | 9 15 | sylbi | ⊢ ( ( ¬ 𝐴 = ∅ ∧ ∃* 𝑧 𝑧 ∈ 𝐴 ) → ∃ 𝑦 𝐴 = { 𝑦 } ) |
| 17 | 16 | expcom | ⊢ ( ∃* 𝑧 𝑧 ∈ 𝐴 → ( ¬ 𝐴 = ∅ → ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
| 18 | 17 | orrd | ⊢ ( ∃* 𝑧 𝑧 ∈ 𝐴 → ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
| 19 | mo0 | ⊢ ( 𝐴 = ∅ → ∃* 𝑧 𝑧 ∈ 𝐴 ) | |
| 20 | mosn | ⊢ ( 𝐴 = { 𝑦 } → ∃* 𝑧 𝑧 ∈ 𝐴 ) | |
| 21 | 20 | exlimiv | ⊢ ( ∃ 𝑦 𝐴 = { 𝑦 } → ∃* 𝑧 𝑧 ∈ 𝐴 ) |
| 22 | 19 21 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) → ∃* 𝑧 𝑧 ∈ 𝐴 ) |
| 23 | 18 22 | impbii | ⊢ ( ∃* 𝑧 𝑧 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |
| 24 | 4 23 | bitri | ⊢ ( ∃* 𝑥 𝑥 ∈ 𝐴 ↔ ( 𝐴 = ∅ ∨ ∃ 𝑦 𝐴 = { 𝑦 } ) ) |