This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqomlem.a | ⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| Assertion | seqomlem4 | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqomlem.a | ⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| 2 | peano2 | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ∈ ω ) | |
| 3 | 2 | fvresd | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) = ( 𝑄 ‘ suc 𝐴 ) ) |
| 4 | frsuc | ⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝐴 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) ) ) | |
| 5 | 2 | fvresd | ⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝐴 ) ) |
| 6 | 1 | fveq1i | ⊢ ( 𝑄 ‘ suc 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝐴 ) |
| 7 | 5 6 | eqtr4di | ⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝐴 ) = ( 𝑄 ‘ suc 𝐴 ) ) |
| 8 | fvres | ⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝐴 ) ) | |
| 9 | 1 | fveq1i | ⊢ ( 𝑄 ‘ 𝐴 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝐴 ) |
| 10 | 8 9 | eqtr4di | ⊢ ( 𝐴 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) = ( 𝑄 ‘ 𝐴 ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝐴 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝐴 ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
| 12 | 4 7 11 | 3eqtr3d | ⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ suc 𝐴 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
| 13 | 1 | seqomlem1 | ⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
| 14 | 13 | fveq2d | ⊢ ( 𝐴 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) ) |
| 15 | df-ov | ⊢ ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) | |
| 16 | fvex | ⊢ ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ∈ V | |
| 17 | suceq | ⊢ ( 𝑖 = 𝐴 → suc 𝑖 = suc 𝐴 ) | |
| 18 | oveq1 | ⊢ ( 𝑖 = 𝐴 → ( 𝑖 𝐹 𝑣 ) = ( 𝐴 𝐹 𝑣 ) ) | |
| 19 | 17 18 | opeq12d | ⊢ ( 𝑖 = 𝐴 → 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 = 〈 suc 𝐴 , ( 𝐴 𝐹 𝑣 ) 〉 ) |
| 20 | oveq2 | ⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) → ( 𝐴 𝐹 𝑣 ) = ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) | |
| 21 | 20 | opeq2d | ⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) → 〈 suc 𝐴 , ( 𝐴 𝐹 𝑣 ) 〉 = 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) |
| 22 | eqid | ⊢ ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) = ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) | |
| 23 | opex | ⊢ 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ∈ V | |
| 24 | 19 21 22 23 | ovmpo | ⊢ ( ( 𝐴 ∈ ω ∧ ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ∈ V ) → ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) |
| 25 | 16 24 | mpan2 | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 ) |
| 26 | fvres | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) = ( 𝑄 ‘ 𝐴 ) ) | |
| 27 | 26 13 | eqtrd | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
| 28 | frfnom | ⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω | |
| 29 | 1 | reseq1i | ⊢ ( 𝑄 ↾ ω ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) |
| 30 | 29 | fneq1i | ⊢ ( ( 𝑄 ↾ ω ) Fn ω ↔ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) Fn ω ) |
| 31 | 28 30 | mpbir | ⊢ ( 𝑄 ↾ ω ) Fn ω |
| 32 | fnfvelrn | ⊢ ( ( ( 𝑄 ↾ ω ) Fn ω ∧ 𝐴 ∈ ω ) → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) | |
| 33 | 31 32 | mpan | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) |
| 34 | 27 33 | eqeltrrd | ⊢ ( 𝐴 ∈ ω → 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ∈ ran ( 𝑄 ↾ ω ) ) |
| 35 | df-ima | ⊢ ( 𝑄 “ ω ) = ran ( 𝑄 ↾ ω ) | |
| 36 | 34 35 | eleqtrrdi | ⊢ ( 𝐴 ∈ ω → 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) |
| 37 | df-br | ⊢ ( 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ↔ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( 𝐴 ∈ ω → 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
| 39 | 1 | seqomlem2 | ⊢ ( 𝑄 “ ω ) Fn ω |
| 40 | fnbrfvb | ⊢ ( ( ( 𝑄 “ ω ) Fn ω ∧ 𝐴 ∈ ω ) → ( ( ( 𝑄 “ ω ) ‘ 𝐴 ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ↔ 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) | |
| 41 | 39 40 | mpan | ⊢ ( 𝐴 ∈ ω → ( ( ( 𝑄 “ ω ) ‘ 𝐴 ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ↔ 𝐴 ( 𝑄 “ ω ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) ) |
| 42 | 38 41 | mpbird | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 “ ω ) ‘ 𝐴 ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) |
| 43 | 42 | eqcomd | ⊢ ( 𝐴 ∈ ω → ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) = ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) |
| 44 | 43 | oveq2d | ⊢ ( 𝐴 ∈ ω → ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) |
| 45 | 44 | opeq2d | ⊢ ( 𝐴 ∈ ω → 〈 suc 𝐴 , ( 𝐴 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) 〉 = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
| 46 | 25 45 | eqtrd | ⊢ ( 𝐴 ∈ ω → ( 𝐴 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
| 47 | 15 46 | eqtr3id | ⊢ ( 𝐴 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
| 48 | 12 14 47 | 3eqtrd | ⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ suc 𝐴 ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
| 49 | 3 48 | eqtrd | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) = 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ) |
| 50 | fnfvelrn | ⊢ ( ( ( 𝑄 ↾ ω ) Fn ω ∧ suc 𝐴 ∈ ω ) → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) | |
| 51 | 31 2 50 | sylancr | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 ↾ ω ) ‘ suc 𝐴 ) ∈ ran ( 𝑄 ↾ ω ) ) |
| 52 | 49 51 | eqeltrrd | ⊢ ( 𝐴 ∈ ω → 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ∈ ran ( 𝑄 ↾ ω ) ) |
| 53 | 52 35 | eleqtrrdi | ⊢ ( 𝐴 ∈ ω → 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) |
| 54 | df-br | ⊢ ( suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ↔ 〈 suc 𝐴 , ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) 〉 ∈ ( 𝑄 “ ω ) ) | |
| 55 | 53 54 | sylibr | ⊢ ( 𝐴 ∈ ω → suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) |
| 56 | fnbrfvb | ⊢ ( ( ( 𝑄 “ ω ) Fn ω ∧ suc 𝐴 ∈ ω ) → ( ( ( 𝑄 “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ↔ suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) ) | |
| 57 | 39 2 56 | sylancr | ⊢ ( 𝐴 ∈ ω → ( ( ( 𝑄 “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ↔ suc 𝐴 ( 𝑄 “ ω ) ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) ) |
| 58 | 55 57 | mpbird | ⊢ ( 𝐴 ∈ ω → ( ( 𝑄 “ ω ) ‘ suc 𝐴 ) = ( 𝐴 𝐹 ( ( 𝑄 “ ω ) ‘ 𝐴 ) ) ) |