This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqom . (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqomlem.a | |- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| Assertion | seqomlem4 | |- ( A e. _om -> ( ( Q " _om ) ` suc A ) = ( A F ( ( Q " _om ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqomlem.a | |- Q = rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |
|
| 2 | peano2 | |- ( A e. _om -> suc A e. _om ) |
|
| 3 | 2 | fvresd | |- ( A e. _om -> ( ( Q |` _om ) ` suc A ) = ( Q ` suc A ) ) |
| 4 | frsuc | |- ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc A ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) ) ) |
|
| 5 | 2 | fvresd | |- ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc A ) ) |
| 6 | 1 | fveq1i | |- ( Q ` suc A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` suc A ) |
| 7 | 5 6 | eqtr4di | |- ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` suc A ) = ( Q ` suc A ) ) |
| 8 | fvres | |- ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` A ) ) |
|
| 9 | 1 | fveq1i | |- ( Q ` A ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) ` A ) |
| 10 | 8 9 | eqtr4di | |- ( A e. _om -> ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) = ( Q ` A ) ) |
| 11 | 10 | fveq2d | |- ( A e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) ` A ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` A ) ) ) |
| 12 | 4 7 11 | 3eqtr3d | |- ( A e. _om -> ( Q ` suc A ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` A ) ) ) |
| 13 | 1 | seqomlem1 | |- ( A e. _om -> ( Q ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) |
| 14 | 13 | fveq2d | |- ( A e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` ( Q ` A ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. A , ( 2nd ` ( Q ` A ) ) >. ) ) |
| 15 | df-ov | |- ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. A , ( 2nd ` ( Q ` A ) ) >. ) |
|
| 16 | fvex | |- ( 2nd ` ( Q ` A ) ) e. _V |
|
| 17 | suceq | |- ( i = A -> suc i = suc A ) |
|
| 18 | oveq1 | |- ( i = A -> ( i F v ) = ( A F v ) ) |
|
| 19 | 17 18 | opeq12d | |- ( i = A -> <. suc i , ( i F v ) >. = <. suc A , ( A F v ) >. ) |
| 20 | oveq2 | |- ( v = ( 2nd ` ( Q ` A ) ) -> ( A F v ) = ( A F ( 2nd ` ( Q ` A ) ) ) ) |
|
| 21 | 20 | opeq2d | |- ( v = ( 2nd ` ( Q ` A ) ) -> <. suc A , ( A F v ) >. = <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. ) |
| 22 | eqid | |- ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) = ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) |
|
| 23 | opex | |- <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. e. _V |
|
| 24 | 19 21 22 23 | ovmpo | |- ( ( A e. _om /\ ( 2nd ` ( Q ` A ) ) e. _V ) -> ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. ) |
| 25 | 16 24 | mpan2 | |- ( A e. _om -> ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. ) |
| 26 | fvres | |- ( A e. _om -> ( ( Q |` _om ) ` A ) = ( Q ` A ) ) |
|
| 27 | 26 13 | eqtrd | |- ( A e. _om -> ( ( Q |` _om ) ` A ) = <. A , ( 2nd ` ( Q ` A ) ) >. ) |
| 28 | frfnom | |- ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om |
|
| 29 | 1 | reseq1i | |- ( Q |` _om ) = ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) |
| 30 | 29 | fneq1i | |- ( ( Q |` _om ) Fn _om <-> ( rec ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) , <. (/) , ( _I ` I ) >. ) |` _om ) Fn _om ) |
| 31 | 28 30 | mpbir | |- ( Q |` _om ) Fn _om |
| 32 | fnfvelrn | |- ( ( ( Q |` _om ) Fn _om /\ A e. _om ) -> ( ( Q |` _om ) ` A ) e. ran ( Q |` _om ) ) |
|
| 33 | 31 32 | mpan | |- ( A e. _om -> ( ( Q |` _om ) ` A ) e. ran ( Q |` _om ) ) |
| 34 | 27 33 | eqeltrrd | |- ( A e. _om -> <. A , ( 2nd ` ( Q ` A ) ) >. e. ran ( Q |` _om ) ) |
| 35 | df-ima | |- ( Q " _om ) = ran ( Q |` _om ) |
|
| 36 | 34 35 | eleqtrrdi | |- ( A e. _om -> <. A , ( 2nd ` ( Q ` A ) ) >. e. ( Q " _om ) ) |
| 37 | df-br | |- ( A ( Q " _om ) ( 2nd ` ( Q ` A ) ) <-> <. A , ( 2nd ` ( Q ` A ) ) >. e. ( Q " _om ) ) |
|
| 38 | 36 37 | sylibr | |- ( A e. _om -> A ( Q " _om ) ( 2nd ` ( Q ` A ) ) ) |
| 39 | 1 | seqomlem2 | |- ( Q " _om ) Fn _om |
| 40 | fnbrfvb | |- ( ( ( Q " _om ) Fn _om /\ A e. _om ) -> ( ( ( Q " _om ) ` A ) = ( 2nd ` ( Q ` A ) ) <-> A ( Q " _om ) ( 2nd ` ( Q ` A ) ) ) ) |
|
| 41 | 39 40 | mpan | |- ( A e. _om -> ( ( ( Q " _om ) ` A ) = ( 2nd ` ( Q ` A ) ) <-> A ( Q " _om ) ( 2nd ` ( Q ` A ) ) ) ) |
| 42 | 38 41 | mpbird | |- ( A e. _om -> ( ( Q " _om ) ` A ) = ( 2nd ` ( Q ` A ) ) ) |
| 43 | 42 | eqcomd | |- ( A e. _om -> ( 2nd ` ( Q ` A ) ) = ( ( Q " _om ) ` A ) ) |
| 44 | 43 | oveq2d | |- ( A e. _om -> ( A F ( 2nd ` ( Q ` A ) ) ) = ( A F ( ( Q " _om ) ` A ) ) ) |
| 45 | 44 | opeq2d | |- ( A e. _om -> <. suc A , ( A F ( 2nd ` ( Q ` A ) ) ) >. = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) |
| 46 | 25 45 | eqtrd | |- ( A e. _om -> ( A ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ( 2nd ` ( Q ` A ) ) ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) |
| 47 | 15 46 | eqtr3id | |- ( A e. _om -> ( ( i e. _om , v e. _V |-> <. suc i , ( i F v ) >. ) ` <. A , ( 2nd ` ( Q ` A ) ) >. ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) |
| 48 | 12 14 47 | 3eqtrd | |- ( A e. _om -> ( Q ` suc A ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) |
| 49 | 3 48 | eqtrd | |- ( A e. _om -> ( ( Q |` _om ) ` suc A ) = <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. ) |
| 50 | fnfvelrn | |- ( ( ( Q |` _om ) Fn _om /\ suc A e. _om ) -> ( ( Q |` _om ) ` suc A ) e. ran ( Q |` _om ) ) |
|
| 51 | 31 2 50 | sylancr | |- ( A e. _om -> ( ( Q |` _om ) ` suc A ) e. ran ( Q |` _om ) ) |
| 52 | 49 51 | eqeltrrd | |- ( A e. _om -> <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. e. ran ( Q |` _om ) ) |
| 53 | 52 35 | eleqtrrdi | |- ( A e. _om -> <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. e. ( Q " _om ) ) |
| 54 | df-br | |- ( suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) <-> <. suc A , ( A F ( ( Q " _om ) ` A ) ) >. e. ( Q " _om ) ) |
|
| 55 | 53 54 | sylibr | |- ( A e. _om -> suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) ) |
| 56 | fnbrfvb | |- ( ( ( Q " _om ) Fn _om /\ suc A e. _om ) -> ( ( ( Q " _om ) ` suc A ) = ( A F ( ( Q " _om ) ` A ) ) <-> suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) ) ) |
|
| 57 | 39 2 56 | sylancr | |- ( A e. _om -> ( ( ( Q " _om ) ` suc A ) = ( A F ( ( Q " _om ) ` A ) ) <-> suc A ( Q " _om ) ( A F ( ( Q " _om ) ` A ) ) ) ) |
| 58 | 55 57 | mpbird | |- ( A e. _om -> ( ( Q " _om ) ` suc A ) = ( A F ( ( Q " _om ) ` A ) ) ) |