This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for seqom . The underlying recursion generates a sequence of pairs with the expected first values. (Contributed by Stefan O'Rear, 1-Nov-2014) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | seqomlem.a | ⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| Assertion | seqomlem1 | ⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqomlem.a | ⊢ 𝑄 = rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| 2 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ ∅ ) ) | |
| 3 | id | ⊢ ( 𝑎 = ∅ → 𝑎 = ∅ ) | |
| 4 | 2fveq3 | ⊢ ( 𝑎 = ∅ → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) ) | |
| 5 | 3 4 | opeq12d | ⊢ ( 𝑎 = ∅ → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 ) |
| 6 | 2 5 | eqeq12d | ⊢ ( 𝑎 = ∅ → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 ) ) |
| 7 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ 𝑏 ) ) | |
| 8 | id | ⊢ ( 𝑎 = 𝑏 → 𝑎 = 𝑏 ) | |
| 9 | 2fveq3 | ⊢ ( 𝑎 = 𝑏 → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) | |
| 10 | 8 9 | opeq12d | ⊢ ( 𝑎 = 𝑏 → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) |
| 11 | 7 10 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) ) |
| 12 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ suc 𝑏 ) ) | |
| 13 | id | ⊢ ( 𝑎 = suc 𝑏 → 𝑎 = suc 𝑏 ) | |
| 14 | 2fveq3 | ⊢ ( 𝑎 = suc 𝑏 → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) ) | |
| 15 | 13 14 | opeq12d | ⊢ ( 𝑎 = suc 𝑏 → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ) |
| 16 | 12 15 | eqeq12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ suc 𝑏 ) = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ) ) |
| 17 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑄 ‘ 𝑎 ) = ( 𝑄 ‘ 𝐴 ) ) | |
| 18 | id | ⊢ ( 𝑎 = 𝐴 → 𝑎 = 𝐴 ) | |
| 19 | 2fveq3 | ⊢ ( 𝑎 = 𝐴 → ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) = ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) ) | |
| 20 | 18 19 | opeq12d | ⊢ ( 𝑎 = 𝐴 → 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |
| 21 | 17 20 | eqeq12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝑄 ‘ 𝑎 ) = 〈 𝑎 , ( 2nd ‘ ( 𝑄 ‘ 𝑎 ) ) 〉 ↔ ( 𝑄 ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) ) |
| 22 | 1 | fveq1i | ⊢ ( 𝑄 ‘ ∅ ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) |
| 23 | opex | ⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ∈ V | |
| 24 | 23 | rdg0 | ⊢ ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
| 25 | 22 24 | eqtri | ⊢ ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 |
| 26 | 0ex | ⊢ ∅ ∈ V | |
| 27 | fvex | ⊢ ( I ‘ 𝐼 ) ∈ V | |
| 28 | 26 27 | op2nd | ⊢ ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) = ( I ‘ 𝐼 ) |
| 29 | 28 | eqcomi | ⊢ ( I ‘ 𝐼 ) = ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) |
| 30 | 29 | opeq2i | ⊢ 〈 ∅ , ( I ‘ 𝐼 ) 〉 = 〈 ∅ , ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) 〉 |
| 31 | id | ⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) | |
| 32 | fveq2 | ⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) = ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ) | |
| 33 | 32 | opeq2d | ⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 = 〈 ∅ , ( 2nd ‘ 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) 〉 ) |
| 34 | 30 31 33 | 3eqtr4a | ⊢ ( ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( I ‘ 𝐼 ) 〉 → ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 ) |
| 35 | 25 34 | ax-mp | ⊢ ( 𝑄 ‘ ∅ ) = 〈 ∅ , ( 2nd ‘ ( 𝑄 ‘ ∅ ) ) 〉 |
| 36 | df-ov | ⊢ ( 𝑏 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) | |
| 37 | fvex | ⊢ ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ∈ V | |
| 38 | suceq | ⊢ ( 𝑖 = 𝑏 → suc 𝑖 = suc 𝑏 ) | |
| 39 | oveq1 | ⊢ ( 𝑖 = 𝑏 → ( 𝑖 𝐹 𝑣 ) = ( 𝑏 𝐹 𝑣 ) ) | |
| 40 | 38 39 | opeq12d | ⊢ ( 𝑖 = 𝑏 → 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 = 〈 suc 𝑏 , ( 𝑏 𝐹 𝑣 ) 〉 ) |
| 41 | oveq2 | ⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) → ( 𝑏 𝐹 𝑣 ) = ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) ) | |
| 42 | 41 | opeq2d | ⊢ ( 𝑣 = ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) → 〈 suc 𝑏 , ( 𝑏 𝐹 𝑣 ) 〉 = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
| 43 | eqid | ⊢ ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) = ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) | |
| 44 | opex | ⊢ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ∈ V | |
| 45 | 40 42 43 44 | ovmpo | ⊢ ( ( 𝑏 ∈ ω ∧ ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ∈ V ) → ( 𝑏 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
| 46 | 37 45 | mpan2 | ⊢ ( 𝑏 ∈ ω → ( 𝑏 ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
| 47 | 36 46 | eqtr3id | ⊢ ( 𝑏 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
| 48 | fveqeq2 | ⊢ ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ↔ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) | |
| 49 | 47 48 | syl5ibrcom | ⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
| 50 | vex | ⊢ 𝑏 ∈ V | |
| 51 | 50 | sucex | ⊢ suc 𝑏 ∈ V |
| 52 | ovex | ⊢ ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) ∈ V | |
| 53 | 51 52 | op2nd | ⊢ ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) = ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) |
| 54 | 53 | eqcomi | ⊢ ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
| 55 | 54 | a1i | ⊢ ( 𝑏 ∈ ω → ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
| 56 | 55 | opeq2d | ⊢ ( 𝑏 ∈ ω → 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) 〉 ) |
| 57 | id | ⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) | |
| 58 | fveq2 | ⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) = ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) | |
| 59 | 58 | opeq2d | ⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) 〉 ) |
| 60 | 57 59 | eqeq12d | ⊢ ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ↔ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) 〉 ) ) |
| 61 | 56 60 | syl5ibrcom | ⊢ ( 𝑏 ∈ ω → ( ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 𝑏 𝐹 ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
| 62 | 49 61 | syld | ⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
| 63 | frsuc | ⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝑏 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) ) ) | |
| 64 | peano2 | ⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) | |
| 65 | 64 | fvresd | ⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝑏 ) ) |
| 66 | 1 | fveq1i | ⊢ ( 𝑄 ‘ suc 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ suc 𝑏 ) |
| 67 | 65 66 | eqtr4di | ⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ suc 𝑏 ) = ( 𝑄 ‘ suc 𝑏 ) ) |
| 68 | fvres | ⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝑏 ) ) | |
| 69 | 1 | fveq1i | ⊢ ( 𝑄 ‘ 𝑏 ) = ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ‘ 𝑏 ) |
| 70 | 68 69 | eqtr4di | ⊢ ( 𝑏 ∈ ω → ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) = ( 𝑄 ‘ 𝑏 ) ) |
| 71 | 70 | fveq2d | ⊢ ( 𝑏 ∈ ω → ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( ( rec ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) , 〈 ∅ , ( I ‘ 𝐼 ) 〉 ) ↾ ω ) ‘ 𝑏 ) ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) |
| 72 | 63 67 71 | 3eqtr3d | ⊢ ( 𝑏 ∈ ω → ( 𝑄 ‘ suc 𝑏 ) = ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) |
| 73 | 72 | fveq2d | ⊢ ( 𝑏 ∈ ω → ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) = ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) ) |
| 74 | 73 | opeq2d | ⊢ ( 𝑏 ∈ ω → 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) |
| 75 | 72 74 | eqeq12d | ⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ suc 𝑏 ) = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ↔ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) = 〈 suc 𝑏 , ( 2nd ‘ ( ( 𝑖 ∈ ω , 𝑣 ∈ V ↦ 〈 suc 𝑖 , ( 𝑖 𝐹 𝑣 ) 〉 ) ‘ ( 𝑄 ‘ 𝑏 ) ) ) 〉 ) ) |
| 76 | 62 75 | sylibrd | ⊢ ( 𝑏 ∈ ω → ( ( 𝑄 ‘ 𝑏 ) = 〈 𝑏 , ( 2nd ‘ ( 𝑄 ‘ 𝑏 ) ) 〉 → ( 𝑄 ‘ suc 𝑏 ) = 〈 suc 𝑏 , ( 2nd ‘ ( 𝑄 ‘ suc 𝑏 ) ) 〉 ) ) |
| 77 | 6 11 16 21 35 76 | finds | ⊢ ( 𝐴 ∈ ω → ( 𝑄 ‘ 𝐴 ) = 〈 𝐴 , ( 2nd ‘ ( 𝑄 ‘ 𝐴 ) ) 〉 ) |