This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectco.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| sectco.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| sectco.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| sectco.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| sectco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| sectco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| sectco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | ||
| sectco.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | ||
| sectco.2 | ⊢ ( 𝜑 → 𝐻 ( 𝑌 𝑆 𝑍 ) 𝐾 ) | ||
| Assertion | sectco | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑆 𝑍 ) ( 𝐺 ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectco.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | sectco.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 3 | sectco.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 4 | sectco.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | sectco.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | sectco.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 7 | sectco.z | ⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) | |
| 8 | sectco.1 | ⊢ ( 𝜑 → 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ) | |
| 9 | sectco.2 | ⊢ ( 𝜑 → 𝐻 ( 𝑌 𝑆 𝑍 ) 𝐾 ) | |
| 10 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 11 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 12 | 1 10 2 11 3 4 5 6 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑋 𝑆 𝑌 ) 𝐺 ↔ ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 13 | 8 12 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 14 | 13 | simp1d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 15 | 1 10 2 11 3 4 6 7 | issect | ⊢ ( 𝜑 → ( 𝐻 ( 𝑌 𝑆 𝑍 ) 𝐾 ↔ ( 𝐻 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ 𝐾 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑌 ) 𝐻 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
| 16 | 9 15 | mpbid | ⊢ ( 𝜑 → ( 𝐻 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ∧ 𝐾 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑌 ) 𝐻 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 17 | 16 | simp1d | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 18 | 1 10 2 4 5 6 7 14 17 | catcocl | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑍 ) ) |
| 19 | 16 | simp2d | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 20 | 13 | simp2d | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 21 | 1 10 2 4 5 7 6 18 19 5 20 | catass | ⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) 𝐾 ) ( 〈 𝑋 , 𝑍 〉 · 𝑋 ) ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑌 ) ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) ) |
| 22 | 16 | simp3d | ⊢ ( 𝜑 → ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑌 ) 𝐻 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 23 | 22 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑌 ) 𝐻 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) ) |
| 24 | 1 10 2 4 5 6 7 14 17 6 19 | catass | ⊢ ( 𝜑 → ( ( 𝐾 ( 〈 𝑌 , 𝑍 〉 · 𝑌 ) 𝐻 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) = ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑌 ) ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) |
| 25 | 1 10 11 4 5 2 6 14 | catlid | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 · 𝑌 ) 𝐹 ) = 𝐹 ) |
| 26 | 23 24 25 | 3eqtr3d | ⊢ ( 𝜑 → ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑌 ) ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) = 𝐹 ) |
| 27 | 26 | oveq2d | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) ( 𝐾 ( 〈 𝑋 , 𝑍 〉 · 𝑌 ) ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) |
| 28 | 13 | simp3d | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 29 | 21 27 28 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐺 ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) 𝐾 ) ( 〈 𝑋 , 𝑍 〉 · 𝑋 ) ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 30 | 1 10 2 4 7 6 5 19 20 | catcocl | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) 𝐾 ) ∈ ( 𝑍 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 31 | 1 10 2 11 3 4 5 7 18 30 | issect2 | ⊢ ( 𝜑 → ( ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑆 𝑍 ) ( 𝐺 ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) 𝐾 ) ↔ ( ( 𝐺 ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) 𝐾 ) ( 〈 𝑋 , 𝑍 〉 · 𝑋 ) ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 32 | 29 31 | mpbird | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑋 , 𝑌 〉 · 𝑍 ) 𝐹 ) ( 𝑋 𝑆 𝑍 ) ( 𝐺 ( 〈 𝑍 , 𝑌 〉 · 𝑋 ) 𝐾 ) ) |