This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of two sections. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectco.b | |- B = ( Base ` C ) |
|
| sectco.o | |- .x. = ( comp ` C ) |
||
| sectco.s | |- S = ( Sect ` C ) |
||
| sectco.c | |- ( ph -> C e. Cat ) |
||
| sectco.x | |- ( ph -> X e. B ) |
||
| sectco.y | |- ( ph -> Y e. B ) |
||
| sectco.z | |- ( ph -> Z e. B ) |
||
| sectco.1 | |- ( ph -> F ( X S Y ) G ) |
||
| sectco.2 | |- ( ph -> H ( Y S Z ) K ) |
||
| Assertion | sectco | |- ( ph -> ( H ( <. X , Y >. .x. Z ) F ) ( X S Z ) ( G ( <. Z , Y >. .x. X ) K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectco.b | |- B = ( Base ` C ) |
|
| 2 | sectco.o | |- .x. = ( comp ` C ) |
|
| 3 | sectco.s | |- S = ( Sect ` C ) |
|
| 4 | sectco.c | |- ( ph -> C e. Cat ) |
|
| 5 | sectco.x | |- ( ph -> X e. B ) |
|
| 6 | sectco.y | |- ( ph -> Y e. B ) |
|
| 7 | sectco.z | |- ( ph -> Z e. B ) |
|
| 8 | sectco.1 | |- ( ph -> F ( X S Y ) G ) |
|
| 9 | sectco.2 | |- ( ph -> H ( Y S Z ) K ) |
|
| 10 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 11 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 12 | 1 10 2 11 3 4 5 6 | issect | |- ( ph -> ( F ( X S Y ) G <-> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) ) ) |
| 13 | 8 12 | mpbid | |- ( ph -> ( F e. ( X ( Hom ` C ) Y ) /\ G e. ( Y ( Hom ` C ) X ) /\ ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) ) |
| 14 | 13 | simp1d | |- ( ph -> F e. ( X ( Hom ` C ) Y ) ) |
| 15 | 1 10 2 11 3 4 6 7 | issect | |- ( ph -> ( H ( Y S Z ) K <-> ( H e. ( Y ( Hom ` C ) Z ) /\ K e. ( Z ( Hom ` C ) Y ) /\ ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) ) ) |
| 16 | 9 15 | mpbid | |- ( ph -> ( H e. ( Y ( Hom ` C ) Z ) /\ K e. ( Z ( Hom ` C ) Y ) /\ ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) ) |
| 17 | 16 | simp1d | |- ( ph -> H e. ( Y ( Hom ` C ) Z ) ) |
| 18 | 1 10 2 4 5 6 7 14 17 | catcocl | |- ( ph -> ( H ( <. X , Y >. .x. Z ) F ) e. ( X ( Hom ` C ) Z ) ) |
| 19 | 16 | simp2d | |- ( ph -> K e. ( Z ( Hom ` C ) Y ) ) |
| 20 | 13 | simp2d | |- ( ph -> G e. ( Y ( Hom ` C ) X ) ) |
| 21 | 1 10 2 4 5 7 6 18 19 5 20 | catass | |- ( ph -> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( G ( <. X , Y >. .x. X ) ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) ) |
| 22 | 16 | simp3d | |- ( ph -> ( K ( <. Y , Z >. .x. Y ) H ) = ( ( Id ` C ) ` Y ) ) |
| 23 | 22 | oveq1d | |- ( ph -> ( ( K ( <. Y , Z >. .x. Y ) H ) ( <. X , Y >. .x. Y ) F ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. .x. Y ) F ) ) |
| 24 | 1 10 2 4 5 6 7 14 17 6 19 | catass | |- ( ph -> ( ( K ( <. Y , Z >. .x. Y ) H ) ( <. X , Y >. .x. Y ) F ) = ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) |
| 25 | 1 10 11 4 5 2 6 14 | catlid | |- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. .x. Y ) F ) = F ) |
| 26 | 23 24 25 | 3eqtr3d | |- ( ph -> ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) = F ) |
| 27 | 26 | oveq2d | |- ( ph -> ( G ( <. X , Y >. .x. X ) ( K ( <. X , Z >. .x. Y ) ( H ( <. X , Y >. .x. Z ) F ) ) ) = ( G ( <. X , Y >. .x. X ) F ) ) |
| 28 | 13 | simp3d | |- ( ph -> ( G ( <. X , Y >. .x. X ) F ) = ( ( Id ` C ) ` X ) ) |
| 29 | 21 27 28 | 3eqtrd | |- ( ph -> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( ( Id ` C ) ` X ) ) |
| 30 | 1 10 2 4 7 6 5 19 20 | catcocl | |- ( ph -> ( G ( <. Z , Y >. .x. X ) K ) e. ( Z ( Hom ` C ) X ) ) |
| 31 | 1 10 2 11 3 4 5 7 18 30 | issect2 | |- ( ph -> ( ( H ( <. X , Y >. .x. Z ) F ) ( X S Z ) ( G ( <. Z , Y >. .x. X ) K ) <-> ( ( G ( <. Z , Y >. .x. X ) K ) ( <. X , Z >. .x. X ) ( H ( <. X , Y >. .x. Z ) F ) ) = ( ( Id ` C ) ` X ) ) ) |
| 32 | 29 31 | mpbird | |- ( ph -> ( H ( <. X , Y >. .x. Z ) F ) ( X S Z ) ( G ( <. Z , Y >. .x. X ) K ) ) |