This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function value of the function returning the isomorphisms of a category. (Contributed by AV, 5-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofval | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iso | ⊢ Iso = ( 𝑐 ∈ Cat ↦ ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) ) | |
| 2 | fveq2 | ⊢ ( 𝑐 = 𝐶 → ( Inv ‘ 𝑐 ) = ( Inv ‘ 𝐶 ) ) | |
| 3 | 2 | coeq2d | ⊢ ( 𝑐 = 𝐶 → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝑐 ) ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) |
| 4 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 5 | funmpt | ⊢ Fun ( 𝑥 ∈ V ↦ dom 𝑥 ) | |
| 6 | fvexd | ⊢ ( 𝐶 ∈ Cat → ( Inv ‘ 𝐶 ) ∈ V ) | |
| 7 | cofunexg | ⊢ ( ( Fun ( 𝑥 ∈ V ↦ dom 𝑥 ) ∧ ( Inv ‘ 𝐶 ) ∈ V ) → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ∈ V ) | |
| 8 | 5 6 7 | sylancr | ⊢ ( 𝐶 ∈ Cat → ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ∈ V ) |
| 9 | 1 3 4 8 | fvmptd3 | ⊢ ( 𝐶 ∈ Cat → ( Iso ‘ 𝐶 ) = ( ( 𝑥 ∈ V ↦ dom 𝑥 ) ∘ ( Inv ‘ 𝐶 ) ) ) |