This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If G is a section of F and F is a section of H , then G = H . Proposition 3.10 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectcan.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| sectcan.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | ||
| sectcan.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| sectcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| sectcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| sectcan.1 | ⊢ ( 𝜑 → 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ) | ||
| sectcan.2 | ⊢ ( 𝜑 → 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 ) | ||
| Assertion | sectcan | ⊢ ( 𝜑 → 𝐺 = 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectcan.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | sectcan.s | ⊢ 𝑆 = ( Sect ‘ 𝐶 ) | |
| 3 | sectcan.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 4 | sectcan.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 5 | sectcan.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 6 | sectcan.1 | ⊢ ( 𝜑 → 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ) | |
| 7 | sectcan.2 | ⊢ ( 𝜑 → 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 ) | |
| 8 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 9 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 10 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 11 | 1 8 9 10 2 3 4 5 | issect | ⊢ ( 𝜑 → ( 𝐺 ( 𝑋 𝑆 𝑌 ) 𝐹 ↔ ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) ) |
| 12 | 6 11 | mpbid | ⊢ ( 𝜑 → ( 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 13 | 12 | simp1d | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 14 | 1 8 9 10 2 3 5 4 | issect | ⊢ ( 𝜑 → ( 𝐹 ( 𝑌 𝑆 𝑋 ) 𝐻 ↔ ( 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) ) |
| 15 | 7 14 | mpbid | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ∧ 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ∧ ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) ) |
| 16 | 15 | simp1d | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑌 ( Hom ‘ 𝐶 ) 𝑋 ) ) |
| 17 | 15 | simp2d | ⊢ ( 𝜑 → 𝐻 ∈ ( 𝑋 ( Hom ‘ 𝐶 ) 𝑌 ) ) |
| 18 | 1 8 9 3 4 5 4 13 16 5 17 | catass | ⊢ ( 𝜑 → ( ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) ) |
| 19 | 15 | simp3d | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ) |
| 20 | 19 | oveq1d | ⊢ ( 𝜑 → ( ( 𝐻 ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐹 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) ) |
| 21 | 12 | simp3d | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) = ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) |
| 22 | 21 | oveq2d | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( 𝐹 ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) 𝐺 ) ) = ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 23 | 18 20 22 | 3eqtr3d | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) ) |
| 24 | 1 8 10 3 4 9 5 13 | catlid | ⊢ ( 𝜑 → ( ( ( Id ‘ 𝐶 ) ‘ 𝑌 ) ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑌 ) 𝐺 ) = 𝐺 ) |
| 25 | 1 8 10 3 4 9 5 17 | catrid | ⊢ ( 𝜑 → ( 𝐻 ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) ( ( Id ‘ 𝐶 ) ‘ 𝑋 ) ) = 𝐻 ) |
| 26 | 23 24 25 | 3eqtr3d | ⊢ ( 𝜑 → 𝐺 = 𝐻 ) |