This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If G is a section of F and F is a section of H , then G = H . Proposition 3.10 of Adamek p. 28. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sectcan.b | |- B = ( Base ` C ) |
|
| sectcan.s | |- S = ( Sect ` C ) |
||
| sectcan.c | |- ( ph -> C e. Cat ) |
||
| sectcan.x | |- ( ph -> X e. B ) |
||
| sectcan.y | |- ( ph -> Y e. B ) |
||
| sectcan.1 | |- ( ph -> G ( X S Y ) F ) |
||
| sectcan.2 | |- ( ph -> F ( Y S X ) H ) |
||
| Assertion | sectcan | |- ( ph -> G = H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sectcan.b | |- B = ( Base ` C ) |
|
| 2 | sectcan.s | |- S = ( Sect ` C ) |
|
| 3 | sectcan.c | |- ( ph -> C e. Cat ) |
|
| 4 | sectcan.x | |- ( ph -> X e. B ) |
|
| 5 | sectcan.y | |- ( ph -> Y e. B ) |
|
| 6 | sectcan.1 | |- ( ph -> G ( X S Y ) F ) |
|
| 7 | sectcan.2 | |- ( ph -> F ( Y S X ) H ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 10 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 11 | 1 8 9 10 2 3 4 5 | issect | |- ( ph -> ( G ( X S Y ) F <-> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) ) |
| 12 | 6 11 | mpbid | |- ( ph -> ( G e. ( X ( Hom ` C ) Y ) /\ F e. ( Y ( Hom ` C ) X ) /\ ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) ) |
| 13 | 12 | simp1d | |- ( ph -> G e. ( X ( Hom ` C ) Y ) ) |
| 14 | 1 8 9 10 2 3 5 4 | issect | |- ( ph -> ( F ( Y S X ) H <-> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) ) |
| 15 | 7 14 | mpbid | |- ( ph -> ( F e. ( Y ( Hom ` C ) X ) /\ H e. ( X ( Hom ` C ) Y ) /\ ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) ) |
| 16 | 15 | simp1d | |- ( ph -> F e. ( Y ( Hom ` C ) X ) ) |
| 17 | 15 | simp2d | |- ( ph -> H e. ( X ( Hom ` C ) Y ) ) |
| 18 | 1 8 9 3 4 5 4 13 16 5 17 | catass | |- ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) ) |
| 19 | 15 | simp3d | |- ( ph -> ( H ( <. Y , X >. ( comp ` C ) Y ) F ) = ( ( Id ` C ) ` Y ) ) |
| 20 | 19 | oveq1d | |- ( ph -> ( ( H ( <. Y , X >. ( comp ` C ) Y ) F ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) ) |
| 21 | 12 | simp3d | |- ( ph -> ( F ( <. X , Y >. ( comp ` C ) X ) G ) = ( ( Id ` C ) ` X ) ) |
| 22 | 21 | oveq2d | |- ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( F ( <. X , Y >. ( comp ` C ) X ) G ) ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 23 | 18 20 22 | 3eqtr3d | |- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) ) |
| 24 | 1 8 10 3 4 9 5 13 | catlid | |- ( ph -> ( ( ( Id ` C ) ` Y ) ( <. X , Y >. ( comp ` C ) Y ) G ) = G ) |
| 25 | 1 8 10 3 4 9 5 17 | catrid | |- ( ph -> ( H ( <. X , X >. ( comp ` C ) Y ) ( ( Id ` C ) ` X ) ) = H ) |
| 26 | 23 24 25 | 3eqtr3d | |- ( ph -> G = H ) |