This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative shorter proof of sbralie dependent on ax-ext , df-cleq , df-clel . (Contributed by NM, 5-Sep-2004) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbralie.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | sbralieALT | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbralie.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | cbvralsvw | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 ↔ ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ) | |
| 3 | 2 | sbbii | ⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ) |
| 4 | raleq | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) ) | |
| 5 | 4 | sbievw | ⊢ ( [ 𝑦 / 𝑥 ] ∀ 𝑧 ∈ 𝑥 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ) |
| 6 | cbvralsvw | ⊢ ( ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝑦 [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ) | |
| 7 | sbco2vv | ⊢ ( [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ [ 𝑥 / 𝑦 ] 𝜓 ) | |
| 8 | 1 | bicomd | ⊢ ( 𝑥 = 𝑦 → ( 𝜓 ↔ 𝜑 ) ) |
| 9 | 8 | equcoms | ⊢ ( 𝑦 = 𝑥 → ( 𝜓 ↔ 𝜑 ) ) |
| 10 | 9 | sbievw | ⊢ ( [ 𝑥 / 𝑦 ] 𝜓 ↔ 𝜑 ) |
| 11 | 7 10 | bitri | ⊢ ( [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ 𝜑 ) |
| 12 | 11 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝑦 [ 𝑥 / 𝑧 ] [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝑦 𝜑 ) |
| 13 | 6 12 | bitri | ⊢ ( ∀ 𝑧 ∈ 𝑦 [ 𝑧 / 𝑦 ] 𝜓 ↔ ∀ 𝑥 ∈ 𝑦 𝜑 ) |
| 14 | 3 5 13 | 3bitrri | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |