This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable by using a substitution. Version of cbvralsv with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 20-Nov-2005) Avoid ax-13 . (Revised by GG, 10-Jan-2024) (Proof shortened by Wolf Lammen, 8-Mar-2025) Avoid ax-10 , ax-12 . (Revised by SN, 21-Aug-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cbvralsvw | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 [ 𝑦 / 𝑥 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb8v | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝜑 ) ) | |
| 3 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝐴 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 4 | eleq1w | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) | |
| 5 | 4 | imbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → 𝜑 ) ) ) |
| 6 | 5 | sbbiiev | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ( 𝑦 ∈ 𝐴 → 𝜑 ) ) |
| 7 | sbrimvw | ⊢ ( [ 𝑦 / 𝑥 ] ( 𝑦 ∈ 𝐴 → 𝜑 ) ↔ ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ) | |
| 8 | 6 7 | bitr2i | ⊢ ( ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 9 | 8 | albii | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝐴 → [ 𝑦 / 𝑥 ] 𝜑 ) ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 10 | 3 9 | bitri | ⊢ ( ∀ 𝑦 ∈ 𝐴 [ 𝑦 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 [ 𝑦 / 𝑥 ] ( 𝑥 ∈ 𝐴 → 𝜑 ) ) |
| 11 | 1 2 10 | 3bitr4i | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝜑 ↔ ∀ 𝑦 ∈ 𝐴 [ 𝑦 / 𝑥 ] 𝜑 ) |