This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbralie as of 13-Nov-2025. (Contributed by NM, 5-Sep-2004) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbralie.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | sbralieOLD | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbralie.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) | |
| 3 | nfv | ⊢ Ⅎ 𝑧 𝜑 | |
| 4 | 3 | sblim | ⊢ ( [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑥 ∈ 𝑧 → 𝜑 ) ) |
| 5 | elsb2 | ⊢ ( [ 𝑦 / 𝑧 ] 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦 ) | |
| 6 | 5 | imbi1i | ⊢ ( ( [ 𝑦 / 𝑧 ] 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 7 | 4 6 | bitri | ⊢ ( [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 8 | 7 | albii | ⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 9 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 10 | 9 1 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) ) |
| 11 | 10 | cbvalvw | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 12 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) | |
| 13 | 12 | sbbii | ⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 14 | sbal | ⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ) | |
| 15 | nfv | ⊢ Ⅎ 𝑥 𝜓 | |
| 16 | 15 | sblim | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 17 | elsb2 | ⊢ ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) | |
| 18 | 17 | imbi1i | ⊢ ( ( [ 𝑧 / 𝑥 ] 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 19 | 16 18 | bitri | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 20 | 19 | albii | ⊢ ( ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 21 | 13 14 20 | 3bitrri | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 22 | 11 21 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 23 | 22 | sbbii | ⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 24 | sbal | ⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ) | |
| 25 | sbco2vv | ⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) | |
| 26 | 23 24 25 | 3bitr3i | ⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 27 | 2 8 26 | 3bitr2i | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |