This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternative shorter proof of sbralie dependent on ax-ext , df-cleq , df-clel . (Contributed by NM, 5-Sep-2004) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbralie.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| Assertion | sbralieALT | |- ( A. x e. y ph <-> [ y / x ] A. y e. x ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbralie.1 | |- ( x = y -> ( ph <-> ps ) ) |
|
| 2 | cbvralsvw | |- ( A. y e. x ps <-> A. z e. x [ z / y ] ps ) |
|
| 3 | 2 | sbbii | |- ( [ y / x ] A. y e. x ps <-> [ y / x ] A. z e. x [ z / y ] ps ) |
| 4 | raleq | |- ( x = y -> ( A. z e. x [ z / y ] ps <-> A. z e. y [ z / y ] ps ) ) |
|
| 5 | 4 | sbievw | |- ( [ y / x ] A. z e. x [ z / y ] ps <-> A. z e. y [ z / y ] ps ) |
| 6 | cbvralsvw | |- ( A. z e. y [ z / y ] ps <-> A. x e. y [ x / z ] [ z / y ] ps ) |
|
| 7 | sbco2vv | |- ( [ x / z ] [ z / y ] ps <-> [ x / y ] ps ) |
|
| 8 | 1 | bicomd | |- ( x = y -> ( ps <-> ph ) ) |
| 9 | 8 | equcoms | |- ( y = x -> ( ps <-> ph ) ) |
| 10 | 9 | sbievw | |- ( [ x / y ] ps <-> ph ) |
| 11 | 7 10 | bitri | |- ( [ x / z ] [ z / y ] ps <-> ph ) |
| 12 | 11 | ralbii | |- ( A. x e. y [ x / z ] [ z / y ] ps <-> A. x e. y ph ) |
| 13 | 6 12 | bitri | |- ( A. z e. y [ z / y ] ps <-> A. x e. y ph ) |
| 14 | 3 5 13 | 3bitrri | |- ( A. x e. y ph <-> [ y / x ] A. y e. x ps ) |