This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit to explicit substitution that swaps variables in a restrictedly universally quantified expression. (Contributed by NM, 5-Sep-2004) Avoid ax-ext , df-cleq , df-clel . (Revised by Wolf Lammen, 10-Mar-2025) Avoid ax-10 , ax-12 . (Revised by SN, 13-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | sbralie.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | sbralie | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbralie.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) | |
| 3 | elequ2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 4 | 3 | imbi1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) ) |
| 5 | 4 | sbievw | ⊢ ( [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 6 | 5 | albii | ⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑦 → 𝜑 ) ) |
| 7 | elequ1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 8 | 7 1 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) ) |
| 9 | 8 | cbvalvw | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 10 | df-ral | ⊢ ( ∀ 𝑦 ∈ 𝑥 𝜓 ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) | |
| 11 | 10 | sbbii | ⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ) |
| 12 | sbal | ⊢ ( [ 𝑧 / 𝑥 ] ∀ 𝑦 ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ) | |
| 13 | elequ2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 14 | 13 | imbi1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) ) |
| 15 | 14 | sbievw | ⊢ ( [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 16 | 15 | albii | ⊢ ( ∀ 𝑦 [ 𝑧 / 𝑥 ] ( 𝑦 ∈ 𝑥 → 𝜓 ) ↔ ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ) |
| 17 | 11 12 16 | 3bitrri | ⊢ ( ∀ 𝑦 ( 𝑦 ∈ 𝑧 → 𝜓 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 18 | 9 17 | bitri | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 19 | 18 | sbbii | ⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 20 | sbal | ⊢ ( [ 𝑦 / 𝑧 ] ∀ 𝑥 ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ) | |
| 21 | sbco2vv | ⊢ ( [ 𝑦 / 𝑧 ] [ 𝑧 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) | |
| 22 | 19 20 21 | 3bitr3i | ⊢ ( ∀ 𝑥 [ 𝑦 / 𝑧 ] ( 𝑥 ∈ 𝑧 → 𝜑 ) ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |
| 23 | 2 6 22 | 3bitr2i | ⊢ ( ∀ 𝑥 ∈ 𝑦 𝜑 ↔ [ 𝑦 / 𝑥 ] ∀ 𝑦 ∈ 𝑥 𝜓 ) |