This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbnf as of 2-May-2025. (Contributed by BJ, 2-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbnfOLD | ⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim | ⊢ ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) | |
| 2 | sbal | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 3 | 2 | imbi2i | ⊢ ( ( [ 𝑧 / 𝑦 ] 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 4 | 1 3 | bitri | ⊢ ( [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 5 | 4 | albii | ⊢ ( ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 6 | nf5 | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 7 | 6 | sbbii | ⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 8 | sbal | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 ( 𝜑 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 9 | 7 8 | bitri | ⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] ( 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 10 | nf5 | ⊢ ( Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ( [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) | |
| 11 | 5 9 10 | 3bitr4i | ⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |