This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of sbnf as of 2-May-2025. (Contributed by BJ, 2-May-2019) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbnfOLD | |- ( [ z / y ] F/ x ph <-> F/ x [ z / y ] ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbim | |- ( [ z / y ] ( ph -> A. x ph ) <-> ( [ z / y ] ph -> [ z / y ] A. x ph ) ) |
|
| 2 | sbal | |- ( [ z / y ] A. x ph <-> A. x [ z / y ] ph ) |
|
| 3 | 2 | imbi2i | |- ( ( [ z / y ] ph -> [ z / y ] A. x ph ) <-> ( [ z / y ] ph -> A. x [ z / y ] ph ) ) |
| 4 | 1 3 | bitri | |- ( [ z / y ] ( ph -> A. x ph ) <-> ( [ z / y ] ph -> A. x [ z / y ] ph ) ) |
| 5 | 4 | albii | |- ( A. x [ z / y ] ( ph -> A. x ph ) <-> A. x ( [ z / y ] ph -> A. x [ z / y ] ph ) ) |
| 6 | nf5 | |- ( F/ x ph <-> A. x ( ph -> A. x ph ) ) |
|
| 7 | 6 | sbbii | |- ( [ z / y ] F/ x ph <-> [ z / y ] A. x ( ph -> A. x ph ) ) |
| 8 | sbal | |- ( [ z / y ] A. x ( ph -> A. x ph ) <-> A. x [ z / y ] ( ph -> A. x ph ) ) |
|
| 9 | 7 8 | bitri | |- ( [ z / y ] F/ x ph <-> A. x [ z / y ] ( ph -> A. x ph ) ) |
| 10 | nf5 | |- ( F/ x [ z / y ] ph <-> A. x ( [ z / y ] ph -> A. x [ z / y ] ph ) ) |
|
| 11 | 5 9 10 | 3bitr4i | |- ( [ z / y ] F/ x ph <-> F/ x [ z / y ] ph ) |