This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move universal quantifier in and out of substitution. (Contributed by NM, 16-May-1993) (Proof shortened by Wolf Lammen, 29-Sep-2018) Reduce dependencies on axioms. (Revised by Steven Nguyen, 13-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbal | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcom | ⊢ ( ∀ 𝑤 ∀ 𝑥 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) | |
| 2 | 19.21v | ⊢ ( ∀ 𝑥 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ( 𝑦 = 𝑤 → ∀ 𝑥 𝜑 ) ) | |
| 3 | 2 | albii | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ∀ 𝑦 ( 𝑦 = 𝑤 → ∀ 𝑥 𝜑 ) ) |
| 4 | alcom | ⊢ ( ∀ 𝑦 ∀ 𝑥 ( 𝑦 = 𝑤 → 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) | |
| 5 | 3 4 | bitr3i | ⊢ ( ∀ 𝑦 ( 𝑦 = 𝑤 → ∀ 𝑥 𝜑 ) ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) |
| 6 | 5 | imbi2i | ⊢ ( ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → ∀ 𝑥 𝜑 ) ) ↔ ( 𝑤 = 𝑧 → ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
| 7 | 6 | albii | ⊢ ( ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → ∀ 𝑥 𝜑 ) ) ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
| 8 | dfsb | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → ∀ 𝑥 𝜑 ) ) ) | |
| 9 | 19.21v | ⊢ ( ∀ 𝑥 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ( 𝑤 = 𝑧 → ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) | |
| 10 | 9 | albii | ⊢ ( ∀ 𝑤 ∀ 𝑥 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑥 ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
| 11 | 7 8 10 | 3bitr4i | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑤 ∀ 𝑥 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
| 12 | dfsb | ⊢ ( [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) | |
| 13 | 12 | albii | ⊢ ( ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ∀ 𝑥 ∀ 𝑤 ( 𝑤 = 𝑧 → ∀ 𝑦 ( 𝑦 = 𝑤 → 𝜑 ) ) ) |
| 14 | 1 11 13 | 3bitr4i | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |