This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Move nonfree predicate in and out of substitution; see sbal and sbex . (Contributed by BJ, 2-May-2019) (Proof shortened by Wolf Lammen, 2-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sbnf | ⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf | ⊢ ( Ⅎ 𝑥 𝜑 ↔ ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) | |
| 2 | 1 | sbbii | ⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ [ 𝑧 / 𝑦 ] ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ) |
| 3 | sbim | ⊢ ( [ 𝑧 / 𝑦 ] ( ∃ 𝑥 𝜑 → ∀ 𝑥 𝜑 ) ↔ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ) | |
| 4 | sbex | ⊢ ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 ↔ ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 5 | sbal | ⊢ ( [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ↔ ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) | |
| 6 | 4 5 | imbi12i | ⊢ ( ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ ( ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) |
| 7 | df-nf | ⊢ ( Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ↔ ( ∃ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 → ∀ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) ) | |
| 8 | 6 7 | bitr4i | ⊢ ( ( [ 𝑧 / 𝑦 ] ∃ 𝑥 𝜑 → [ 𝑧 / 𝑦 ] ∀ 𝑥 𝜑 ) ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |
| 9 | 2 3 8 | 3bitri | ⊢ ( [ 𝑧 / 𝑦 ] Ⅎ 𝑥 𝜑 ↔ Ⅎ 𝑥 [ 𝑧 / 𝑦 ] 𝜑 ) |