This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two "Godel-set of membership" codes for two variables are equal iff the two corresponding variables are equal. (Contributed by AV, 8-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | goeleq12bg | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ( 𝐼 ∈𝑔 𝐽 ) = ( 𝑀 ∈𝑔 𝑁 ) ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | goel | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 𝐼 ∈𝑔 𝐽 ) = 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 ) | |
| 2 | goel | ⊢ ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) → ( 𝑀 ∈𝑔 𝑁 ) = 〈 ∅ , 〈 𝑀 , 𝑁 〉 〉 ) | |
| 3 | 1 2 | eqeqan12rd | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ( 𝐼 ∈𝑔 𝐽 ) = ( 𝑀 ∈𝑔 𝑁 ) ↔ 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 = 〈 ∅ , 〈 𝑀 , 𝑁 〉 〉 ) ) |
| 4 | 0ex | ⊢ ∅ ∈ V | |
| 5 | opex | ⊢ 〈 𝐼 , 𝐽 〉 ∈ V | |
| 6 | 4 5 | opth | ⊢ ( 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 = 〈 ∅ , 〈 𝑀 , 𝑁 〉 〉 ↔ ( ∅ = ∅ ∧ 〈 𝐼 , 𝐽 〉 = 〈 𝑀 , 𝑁 〉 ) ) |
| 7 | eqid | ⊢ ∅ = ∅ | |
| 8 | 7 | biantrur | ⊢ ( 〈 𝐼 , 𝐽 〉 = 〈 𝑀 , 𝑁 〉 ↔ ( ∅ = ∅ ∧ 〈 𝐼 , 𝐽 〉 = 〈 𝑀 , 𝑁 〉 ) ) |
| 9 | opthg | ⊢ ( ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) → ( 〈 𝐼 , 𝐽 〉 = 〈 𝑀 , 𝑁 〉 ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) | |
| 10 | 9 | adantl | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( 〈 𝐼 , 𝐽 〉 = 〈 𝑀 , 𝑁 〉 ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
| 11 | 8 10 | bitr3id | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ( ∅ = ∅ ∧ 〈 𝐼 , 𝐽 〉 = 〈 𝑀 , 𝑁 〉 ) ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
| 12 | 6 11 | bitrid | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( 〈 ∅ , 〈 𝐼 , 𝐽 〉 〉 = 〈 ∅ , 〈 𝑀 , 𝑁 〉 〉 ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |
| 13 | 3 12 | bitrd | ⊢ ( ( ( 𝑀 ∈ ω ∧ 𝑁 ∈ ω ) ∧ ( 𝐼 ∈ ω ∧ 𝐽 ∈ ω ) ) → ( ( 𝐼 ∈𝑔 𝐽 ) = ( 𝑀 ∈𝑔 𝑁 ) ↔ ( 𝐼 = 𝑀 ∧ 𝐽 = 𝑁 ) ) ) |