This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for satffun : induction step. (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffunlem2 | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) | |
| 2 | simpr | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) | |
| 3 | peano2 | ⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) | |
| 4 | 3 | ancri | ⊢ ( 𝑁 ∈ ω → ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) |
| 6 | sssucid | ⊢ 𝑁 ⊆ suc 𝑁 | |
| 7 | 6 | a1i | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → 𝑁 ⊆ suc 𝑁 ) |
| 8 | eqid | ⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) | |
| 9 | 8 | satfsschain | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) → ( 𝑁 ⊆ suc 𝑁 → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) ) |
| 10 | 9 | imp | ⊢ ( ( ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ∧ ( suc 𝑁 ∈ ω ∧ 𝑁 ∈ ω ) ) ∧ 𝑁 ⊆ suc 𝑁 ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 11 | 2 5 7 10 | syl21anc | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) |
| 12 | eqid | ⊢ ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) | |
| 13 | eqid | ⊢ { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } | |
| 14 | 8 12 13 | satffunlem2lem1 | ⊢ ( ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) |
| 15 | 14 | expcom | ⊢ ( ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ⊆ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) |
| 16 | 11 15 | syl | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) |
| 18 | 8 12 13 | satffunlem2lem2 | ⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∩ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) = ∅ ) |
| 19 | funun | ⊢ ( ( ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∧ Fun { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ∧ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∩ dom { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) = ∅ ) → Fun ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) | |
| 20 | 1 17 18 19 | syl21anc | ⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → Fun ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) |
| 21 | simpl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝑀 ∈ 𝑉 ) | |
| 22 | simpr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → 𝐸 ∈ 𝑊 ) | |
| 23 | simpl | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → 𝑁 ∈ ω ) | |
| 24 | 8 12 13 | satfvsucsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑁 ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑁 ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) |
| 25 | 21 22 23 24 | syl2an23an | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑁 ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) |
| 26 | 25 | funeqd | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑁 ) ↔ Fun ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) ) |
| 27 | 26 | adantr | ⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑁 ) ↔ Fun ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ( ∃ 𝑢 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) ∨ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ∃ 𝑣 ∈ ( ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ∖ ( ( 𝑀 Sat 𝐸 ) ‘ 𝑁 ) ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ) } ) ) ) |
| 28 | 20 27 | mpbird | ⊢ ( ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) ∧ Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑁 ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝑁 ∈ ω ∧ ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc 𝑁 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc suc 𝑁 ) ) ) |