This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for satffun : induction basis. (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffunlem1 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv0fun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) | |
| 2 | satffunlem1lem1 | ⊢ ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) |
| 4 | satffunlem1lem2 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∩ dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) = ∅ ) | |
| 5 | funun | ⊢ ( ( ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∧ Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ∧ ( dom ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∩ dom { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) = ∅ ) → Fun ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) | |
| 6 | 1 3 4 5 | syl21anc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 7 | peano1 | ⊢ ∅ ∈ ω | |
| 8 | eqid | ⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) | |
| 9 | 8 | satfvsuc | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ ∅ ∈ ω ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 10 | 7 9 | mp3an3 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) = ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) |
| 11 | 10 | funeqd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ↔ Fun ( ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ∪ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑢 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( ∃ 𝑣 ∈ ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ( 𝑥 = ( ( 1st ‘ 𝑢 ) ⊼𝑔 ( 1st ‘ 𝑣 ) ) ∧ 𝑦 = ( ( 𝑀 ↑m ω ) ∖ ( ( 2nd ‘ 𝑢 ) ∩ ( 2nd ‘ 𝑣 ) ) ) ) ∨ ∃ 𝑖 ∈ ω ( 𝑥 = ∀𝑔 𝑖 ( 1st ‘ 𝑢 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ∀ 𝑗 ∈ 𝑀 ( { 〈 𝑖 , 𝑗 〉 } ∪ ( 𝑓 ↾ ( ω ∖ { 𝑖 } ) ) ) ∈ ( 2nd ‘ 𝑢 ) } ) ) } ) ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ suc ∅ ) ) |