This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes at a natural number is a function. (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satffun | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satfv0fun | |- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` (/) ) ) |
|
| 2 | 1 | 3adant3 | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` (/) ) ) |
| 3 | fveq2 | |- ( N = (/) -> ( ( M Sat E ) ` N ) = ( ( M Sat E ) ` (/) ) ) |
|
| 4 | 3 | funeqd | |- ( N = (/) -> ( Fun ( ( M Sat E ) ` N ) <-> Fun ( ( M Sat E ) ` (/) ) ) ) |
| 5 | 2 4 | imbitrrid | |- ( N = (/) -> ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) ) |
| 6 | df-ne | |- ( N =/= (/) <-> -. N = (/) ) |
|
| 7 | nnsuc | |- ( ( N e. _om /\ N =/= (/) ) -> E. n e. _om N = suc n ) |
|
| 8 | suceq | |- ( x = (/) -> suc x = suc (/) ) |
|
| 9 | 8 | fveq2d | |- ( x = (/) -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc (/) ) ) |
| 10 | 9 | funeqd | |- ( x = (/) -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc (/) ) ) ) |
| 11 | 10 | imbi2d | |- ( x = (/) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc (/) ) ) ) ) |
| 12 | suceq | |- ( x = y -> suc x = suc y ) |
|
| 13 | 12 | fveq2d | |- ( x = y -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc y ) ) |
| 14 | 13 | funeqd | |- ( x = y -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc y ) ) ) |
| 15 | 14 | imbi2d | |- ( x = y -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) ) ) |
| 16 | suceq | |- ( x = suc y -> suc x = suc suc y ) |
|
| 17 | 16 | fveq2d | |- ( x = suc y -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc suc y ) ) |
| 18 | 17 | funeqd | |- ( x = suc y -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc suc y ) ) ) |
| 19 | 18 | imbi2d | |- ( x = suc y -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
| 20 | suceq | |- ( x = n -> suc x = suc n ) |
|
| 21 | 20 | fveq2d | |- ( x = n -> ( ( M Sat E ) ` suc x ) = ( ( M Sat E ) ` suc n ) ) |
| 22 | 21 | funeqd | |- ( x = n -> ( Fun ( ( M Sat E ) ` suc x ) <-> Fun ( ( M Sat E ) ` suc n ) ) ) |
| 23 | 22 | imbi2d | |- ( x = n -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc x ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) ) |
| 24 | satffunlem1 | |- ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc (/) ) ) |
|
| 25 | pm2.27 | |- ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) -> Fun ( ( M Sat E ) ` suc y ) ) ) |
|
| 26 | satffunlem2 | |- ( ( y e. _om /\ ( M e. V /\ E e. W ) ) -> ( Fun ( ( M Sat E ) ` suc y ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) |
|
| 27 | 26 | expcom | |- ( ( M e. V /\ E e. W ) -> ( y e. _om -> ( Fun ( ( M Sat E ) ` suc y ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
| 28 | 27 | com23 | |- ( ( M e. V /\ E e. W ) -> ( Fun ( ( M Sat E ) ` suc y ) -> ( y e. _om -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
| 29 | 25 28 | syld | |- ( ( M e. V /\ E e. W ) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) -> ( y e. _om -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
| 30 | 29 | com13 | |- ( y e. _om -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc y ) ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc suc y ) ) ) ) |
| 31 | 11 15 19 23 24 30 | finds | |- ( n e. _om -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) |
| 32 | 31 | adantr | |- ( ( n e. _om /\ N = suc n ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) |
| 33 | fveq2 | |- ( N = suc n -> ( ( M Sat E ) ` N ) = ( ( M Sat E ) ` suc n ) ) |
|
| 34 | 33 | funeqd | |- ( N = suc n -> ( Fun ( ( M Sat E ) ` N ) <-> Fun ( ( M Sat E ) ` suc n ) ) ) |
| 35 | 34 | imbi2d | |- ( N = suc n -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) ) |
| 36 | 35 | adantl | |- ( ( n e. _om /\ N = suc n ) -> ( ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) <-> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` suc n ) ) ) ) |
| 37 | 32 36 | mpbird | |- ( ( n e. _om /\ N = suc n ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) |
| 38 | 37 | rexlimiva | |- ( E. n e. _om N = suc n -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) |
| 39 | 7 38 | syl | |- ( ( N e. _om /\ N =/= (/) ) -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) |
| 40 | 39 | expcom | |- ( N =/= (/) -> ( N e. _om -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) ) |
| 41 | 6 40 | sylbir | |- ( -. N = (/) -> ( N e. _om -> ( ( M e. V /\ E e. W ) -> Fun ( ( M Sat E ) ` N ) ) ) ) |
| 42 | 41 | com13 | |- ( ( M e. V /\ E e. W ) -> ( N e. _om -> ( -. N = (/) -> Fun ( ( M Sat E ) ` N ) ) ) ) |
| 43 | 42 | 3impia | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( -. N = (/) -> Fun ( ( M Sat E ) ` N ) ) ) |
| 44 | 43 | com12 | |- ( -. N = (/) -> ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) ) |
| 45 | 5 44 | pm2.61i | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) |