This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the satisfaction predicate as function over wff codes at (/) is a function. (Contributed by AV, 15-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satfv0fun | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funopab | ⊢ ( Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) } ↔ ∀ 𝑥 ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) | |
| 2 | oveq1 | ⊢ ( 𝑖 = 𝑘 → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑘 ∈𝑔 𝑗 ) ) | |
| 3 | 2 | eqeq2d | ⊢ ( 𝑖 = 𝑘 → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ↔ 𝑥 = ( 𝑘 ∈𝑔 𝑗 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝑖 = 𝑘 → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑘 ) ) | |
| 5 | 4 | breq1d | ⊢ ( 𝑖 = 𝑘 → ( ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) ↔ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) ) ) |
| 6 | 5 | rabbidv | ⊢ ( 𝑖 = 𝑘 → { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) |
| 7 | 6 | eqeq2d | ⊢ ( 𝑖 = 𝑘 → ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ↔ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) |
| 8 | 3 7 | anbi12d | ⊢ ( 𝑖 = 𝑘 → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑘 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) ) |
| 9 | oveq2 | ⊢ ( 𝑗 = 𝑙 → ( 𝑘 ∈𝑔 𝑗 ) = ( 𝑘 ∈𝑔 𝑙 ) ) | |
| 10 | 9 | eqeq2d | ⊢ ( 𝑗 = 𝑙 → ( 𝑥 = ( 𝑘 ∈𝑔 𝑗 ) ↔ 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑗 = 𝑙 → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑙 ) ) | |
| 12 | 11 | breq2d | ⊢ ( 𝑗 = 𝑙 → ( ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) ↔ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) ) ) |
| 13 | 12 | rabbidv | ⊢ ( 𝑗 = 𝑙 → { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) |
| 14 | 13 | eqeq2d | ⊢ ( 𝑗 = 𝑙 → ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ↔ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) ) |
| 15 | 10 14 | anbi12d | ⊢ ( 𝑗 = 𝑙 → ( ( 𝑥 = ( 𝑘 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) ) ) |
| 16 | 8 15 | cbvrex2vw | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ↔ ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) ) |
| 17 | eqtr2 | ⊢ ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ) → ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑘 ∈𝑔 𝑙 ) ) | |
| 18 | goeleq12bg | ⊢ ( ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑘 ∈𝑔 𝑙 ) ↔ ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) ) ) | |
| 19 | 4 | adantr | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑓 ‘ 𝑖 ) = ( 𝑓 ‘ 𝑘 ) ) |
| 20 | 19 | eqcomd | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑓 ‘ 𝑘 ) = ( 𝑓 ‘ 𝑖 ) ) |
| 21 | 11 | adantl | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑓 ‘ 𝑗 ) = ( 𝑓 ‘ 𝑙 ) ) |
| 22 | 21 | eqcomd | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑓 ‘ 𝑙 ) = ( 𝑓 ‘ 𝑗 ) ) |
| 23 | 20 22 | breq12d | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) ↔ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) ) ) |
| 24 | 23 | rabbidv | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) |
| 25 | eqeq12 | ⊢ ( ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → ( 𝑦 = 𝑧 ↔ { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) | |
| 26 | 24 25 | syl5ibrcom | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 27 | 26 | expd | ⊢ ( ( 𝑖 = 𝑘 ∧ 𝑗 = 𝑙 ) → ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } → ( 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) |
| 28 | 18 27 | biimtrdi | ⊢ ( ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑖 ∈𝑔 𝑗 ) = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } → ( 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 29 | 17 28 | syl5 | ⊢ ( ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ) → ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } → ( 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 30 | 29 | expd | ⊢ ( ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) → ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } → ( 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) ) |
| 31 | 30 | imp4a | ⊢ ( ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) → ( 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } → 𝑦 = 𝑧 ) ) ) ) |
| 32 | 31 | com34 | ⊢ ( ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) → ( 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } → ( ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) → 𝑦 = 𝑧 ) ) ) ) |
| 33 | 32 | impd | ⊢ ( ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) ∧ ( 𝑖 ∈ ω ∧ 𝑗 ∈ ω ) ) → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 34 | 33 | rexlimdvva | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → ( ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 35 | 34 | com23 | ⊢ ( ( 𝑘 ∈ ω ∧ 𝑙 ∈ ω ) → ( ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) ) |
| 36 | 35 | rexlimivv | ⊢ ( ∃ 𝑘 ∈ ω ∃ 𝑙 ∈ ω ( 𝑥 = ( 𝑘 ∈𝑔 𝑙 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑘 ) 𝐸 ( 𝑓 ‘ 𝑙 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 37 | 16 36 | sylbi | ⊢ ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) → 𝑦 = 𝑧 ) ) |
| 38 | 37 | imp | ⊢ ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) |
| 39 | 38 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) |
| 40 | eqeq1 | ⊢ ( 𝑦 = 𝑧 → ( 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ↔ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) | |
| 41 | 40 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ↔ ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) ) |
| 42 | 41 | 2rexbidv | ⊢ ( 𝑦 = 𝑧 → ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ↔ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) ) |
| 43 | 42 | mo4 | ⊢ ( ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ↔ ∀ 𝑦 ∀ 𝑧 ( ( ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ∧ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑧 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) ) → 𝑦 = 𝑧 ) ) |
| 44 | 39 43 | mpbir | ⊢ ∃* 𝑦 ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) |
| 45 | 1 44 | mpgbir | ⊢ Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) } |
| 46 | eqid | ⊢ ( 𝑀 Sat 𝐸 ) = ( 𝑀 Sat 𝐸 ) | |
| 47 | 46 | satfv0 | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) } ) |
| 48 | 47 | funeqd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → ( Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ↔ Fun { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑖 ∈ ω ∃ 𝑗 ∈ ω ( 𝑥 = ( 𝑖 ∈𝑔 𝑗 ) ∧ 𝑦 = { 𝑓 ∈ ( 𝑀 ↑m ω ) ∣ ( 𝑓 ‘ 𝑖 ) 𝐸 ( 𝑓 ‘ 𝑗 ) } ) } ) ) |
| 49 | 45 48 | mpbiri | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ) → Fun ( ( 𝑀 Sat 𝐸 ) ‘ ∅ ) ) |