This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The satisfaction predicate as function over wff codes in the model M and the binary relation E on M . (Contributed by AV, 28-Oct-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | satff | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M Sat E ) ` N ) : ( Fmla ` N ) --> ~P ( M ^m _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | satffun | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> Fun ( ( M Sat E ) ` N ) ) |
|
| 2 | satfdmfmla | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) |
|
| 3 | df-fn | |- ( ( ( M Sat E ) ` N ) Fn ( Fmla ` N ) <-> ( Fun ( ( M Sat E ) ` N ) /\ dom ( ( M Sat E ) ` N ) = ( Fmla ` N ) ) ) |
|
| 4 | 1 2 3 | sylanbrc | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M Sat E ) ` N ) Fn ( Fmla ` N ) ) |
| 5 | satfrnmapom | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ran ( ( M Sat E ) ` N ) C_ ~P ( M ^m _om ) ) |
|
| 6 | df-f | |- ( ( ( M Sat E ) ` N ) : ( Fmla ` N ) --> ~P ( M ^m _om ) <-> ( ( ( M Sat E ) ` N ) Fn ( Fmla ` N ) /\ ran ( ( M Sat E ) ` N ) C_ ~P ( M ^m _om ) ) ) |
|
| 7 | 4 5 6 | sylanbrc | |- ( ( M e. V /\ E e. W /\ N e. _om ) -> ( ( M Sat E ) ` N ) : ( Fmla ` N ) --> ~P ( M ^m _om ) ) |