This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ruc . The constructed interval [ X , Y ] always excludes M . (Contributed by Mario Carneiro, 28-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | ||
| ruclem1.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| ruclem1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ruclem1.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | ||
| ruclem1.6 | ⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | ||
| ruclem1.7 | ⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | ||
| ruclem2.8 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | ||
| Assertion | ruclem3 | ⊢ ( 𝜑 → ( 𝑀 < 𝑋 ∨ 𝑌 < 𝑀 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ruc.1 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℝ ) | |
| 2 | ruc.2 | ⊢ ( 𝜑 → 𝐷 = ( 𝑥 ∈ ( ℝ × ℝ ) , 𝑦 ∈ ℝ ↦ ⦋ ( ( ( 1st ‘ 𝑥 ) + ( 2nd ‘ 𝑥 ) ) / 2 ) / 𝑚 ⦌ if ( 𝑚 < 𝑦 , 〈 ( 1st ‘ 𝑥 ) , 𝑚 〉 , 〈 ( ( 𝑚 + ( 2nd ‘ 𝑥 ) ) / 2 ) , ( 2nd ‘ 𝑥 ) 〉 ) ) ) | |
| 3 | ruclem1.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | ruclem1.4 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 5 | ruclem1.5 | ⊢ ( 𝜑 → 𝑀 ∈ ℝ ) | |
| 6 | ruclem1.6 | ⊢ 𝑋 = ( 1st ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | |
| 7 | ruclem1.7 | ⊢ 𝑌 = ( 2nd ‘ ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ) | |
| 8 | ruclem2.8 | ⊢ ( 𝜑 → 𝐴 < 𝐵 ) | |
| 9 | 3 4 | readdcld | ⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℝ ) |
| 10 | 9 | rehalfcld | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ) |
| 11 | 5 10 | lenltd | ⊢ ( 𝜑 → ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) ↔ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) ) |
| 12 | avglt2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) | |
| 13 | 3 4 12 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) ) |
| 14 | 8 13 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ) |
| 15 | avglt1 | ⊢ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) | |
| 16 | 10 4 15 | syl2anc | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝐵 ↔ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 17 | 14 16 | mpbid | ⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 18 | 10 4 | readdcld | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) ∈ ℝ ) |
| 19 | 18 | rehalfcld | ⊢ ( 𝜑 → ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ ) |
| 20 | lelttr | ⊢ ( ( 𝑀 ∈ ℝ ∧ ( ( 𝐴 + 𝐵 ) / 2 ) ∈ ℝ ∧ ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ∈ ℝ ) → ( ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) | |
| 21 | 5 10 19 20 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 22 | 17 21 | mpan2d | ⊢ ( 𝜑 → ( 𝑀 ≤ ( ( 𝐴 + 𝐵 ) / 2 ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 23 | 11 22 | sylbird | ⊢ ( 𝜑 → ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 24 | 23 | imp | ⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑀 < ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 25 | 1 2 3 4 5 6 7 | ruclem1 | ⊢ ( 𝜑 → ( ( 〈 𝐴 , 𝐵 〉 𝐷 𝑀 ) ∈ ( ℝ × ℝ ) ∧ 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ∧ 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) ) |
| 26 | 25 | simp2d | ⊢ ( 𝜑 → 𝑋 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) ) |
| 27 | iffalse | ⊢ ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , 𝐴 , ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) | |
| 28 | 26 27 | sylan9eq | ⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑋 = ( ( ( ( 𝐴 + 𝐵 ) / 2 ) + 𝐵 ) / 2 ) ) |
| 29 | 24 28 | breqtrrd | ⊢ ( ( 𝜑 ∧ ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑀 < 𝑋 ) |
| 30 | 29 | ex | ⊢ ( 𝜑 → ( ¬ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → 𝑀 < 𝑋 ) ) |
| 31 | 30 | con1d | ⊢ ( 𝜑 → ( ¬ 𝑀 < 𝑋 → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) ) |
| 32 | 25 | simp3d | ⊢ ( 𝜑 → 𝑌 = if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) ) |
| 33 | iftrue | ⊢ ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → if ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 , ( ( 𝐴 + 𝐵 ) / 2 ) , 𝐵 ) = ( ( 𝐴 + 𝐵 ) / 2 ) ) | |
| 34 | 32 33 | sylan9eq | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑌 = ( ( 𝐴 + 𝐵 ) / 2 ) ) |
| 35 | simpr | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) | |
| 36 | 34 35 | eqbrtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 ) → 𝑌 < 𝑀 ) |
| 37 | 36 | ex | ⊢ ( 𝜑 → ( ( ( 𝐴 + 𝐵 ) / 2 ) < 𝑀 → 𝑌 < 𝑀 ) ) |
| 38 | 31 37 | syld | ⊢ ( 𝜑 → ( ¬ 𝑀 < 𝑋 → 𝑌 < 𝑀 ) ) |
| 39 | 38 | orrd | ⊢ ( 𝜑 → ( 𝑀 < 𝑋 ∨ 𝑌 < 𝑀 ) ) |