This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rspsn.b | |- B = ( Base ` R ) |
|
| rspsn.k | |- K = ( RSpan ` R ) |
||
| rspsn.d | |- .|| = ( ||r ` R ) |
||
| Assertion | rspsn | |- ( ( R e. Ring /\ G e. B ) -> ( K ` { G } ) = { x | G .|| x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspsn.b | |- B = ( Base ` R ) |
|
| 2 | rspsn.k | |- K = ( RSpan ` R ) |
|
| 3 | rspsn.d | |- .|| = ( ||r ` R ) |
|
| 4 | eqcom | |- ( x = ( a ( .r ` R ) G ) <-> ( a ( .r ` R ) G ) = x ) |
|
| 5 | 4 | a1i | |- ( ( R e. Ring /\ G e. B ) -> ( x = ( a ( .r ` R ) G ) <-> ( a ( .r ` R ) G ) = x ) ) |
| 6 | 5 | rexbidv | |- ( ( R e. Ring /\ G e. B ) -> ( E. a e. B x = ( a ( .r ` R ) G ) <-> E. a e. B ( a ( .r ` R ) G ) = x ) ) |
| 7 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 8 | rlmsca2 | |- ( _I ` R ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 9 | baseid | |- Base = Slot ( Base ` ndx ) |
|
| 10 | 9 1 | strfvi | |- B = ( Base ` ( _I ` R ) ) |
| 11 | rlmbas | |- ( Base ` R ) = ( Base ` ( ringLMod ` R ) ) |
|
| 12 | 1 11 | eqtri | |- B = ( Base ` ( ringLMod ` R ) ) |
| 13 | rlmvsca | |- ( .r ` R ) = ( .s ` ( ringLMod ` R ) ) |
|
| 14 | rspval | |- ( RSpan ` R ) = ( LSpan ` ( ringLMod ` R ) ) |
|
| 15 | 2 14 | eqtri | |- K = ( LSpan ` ( ringLMod ` R ) ) |
| 16 | 8 10 12 13 15 | ellspsn | |- ( ( ( ringLMod ` R ) e. LMod /\ G e. B ) -> ( x e. ( K ` { G } ) <-> E. a e. B x = ( a ( .r ` R ) G ) ) ) |
| 17 | 7 16 | sylan | |- ( ( R e. Ring /\ G e. B ) -> ( x e. ( K ` { G } ) <-> E. a e. B x = ( a ( .r ` R ) G ) ) ) |
| 18 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 19 | 1 3 18 | dvdsr2 | |- ( G e. B -> ( G .|| x <-> E. a e. B ( a ( .r ` R ) G ) = x ) ) |
| 20 | 19 | adantl | |- ( ( R e. Ring /\ G e. B ) -> ( G .|| x <-> E. a e. B ( a ( .r ` R ) G ) = x ) ) |
| 21 | 6 17 20 | 3bitr4d | |- ( ( R e. Ring /\ G e. B ) -> ( x e. ( K ` { G } ) <-> G .|| x ) ) |
| 22 | 21 | eqabdv | |- ( ( R e. Ring /\ G e. B ) -> ( K ` { G } ) = { x | G .|| x } ) |