This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rrxmet . (Contributed by Thierry Arnoux, 5-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| rrxmval.d | |- D = ( dist ` ( RR^ ` I ) ) |
||
| rrxmetlem.1 | |- ( ph -> I e. V ) |
||
| rrxmetlem.2 | |- ( ph -> F e. X ) |
||
| rrxmetlem.3 | |- ( ph -> G e. X ) |
||
| rrxmetlem.4 | |- ( ph -> A C_ I ) |
||
| rrxmetlem.5 | |- ( ph -> A e. Fin ) |
||
| rrxmetlem.6 | |- ( ph -> ( ( F supp 0 ) u. ( G supp 0 ) ) C_ A ) |
||
| Assertion | rrxmetlem | |- ( ph -> sum_ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = sum_ k e. A ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxmval.1 | |- X = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| 2 | rrxmval.d | |- D = ( dist ` ( RR^ ` I ) ) |
|
| 3 | rrxmetlem.1 | |- ( ph -> I e. V ) |
|
| 4 | rrxmetlem.2 | |- ( ph -> F e. X ) |
|
| 5 | rrxmetlem.3 | |- ( ph -> G e. X ) |
|
| 6 | rrxmetlem.4 | |- ( ph -> A C_ I ) |
|
| 7 | rrxmetlem.5 | |- ( ph -> A e. Fin ) |
|
| 8 | rrxmetlem.6 | |- ( ph -> ( ( F supp 0 ) u. ( G supp 0 ) ) C_ A ) |
|
| 9 | 8 6 | sstrd | |- ( ph -> ( ( F supp 0 ) u. ( G supp 0 ) ) C_ I ) |
| 10 | 9 | sselda | |- ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> k e. I ) |
| 11 | 1 4 | rrxf | |- ( ph -> F : I --> RR ) |
| 12 | 11 | ffvelcdmda | |- ( ( ph /\ k e. I ) -> ( F ` k ) e. RR ) |
| 13 | 12 | recnd | |- ( ( ph /\ k e. I ) -> ( F ` k ) e. CC ) |
| 14 | 10 13 | syldan | |- ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( F ` k ) e. CC ) |
| 15 | 1 5 | rrxf | |- ( ph -> G : I --> RR ) |
| 16 | 15 | ffvelcdmda | |- ( ( ph /\ k e. I ) -> ( G ` k ) e. RR ) |
| 17 | 16 | recnd | |- ( ( ph /\ k e. I ) -> ( G ` k ) e. CC ) |
| 18 | 10 17 | syldan | |- ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( G ` k ) e. CC ) |
| 19 | 14 18 | subcld | |- ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( ( F ` k ) - ( G ` k ) ) e. CC ) |
| 20 | 19 | sqcld | |- ( ( ph /\ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) e. CC ) |
| 21 | 6 | ssdifd | |- ( ph -> ( A \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) C_ ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) |
| 22 | 21 | sselda | |- ( ( ph /\ k e. ( A \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) |
| 23 | simpr | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) |
|
| 24 | 23 | eldifad | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> k e. I ) |
| 25 | 24 13 | syldan | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( F ` k ) e. CC ) |
| 26 | ssun1 | |- ( F supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) |
|
| 27 | 26 | a1i | |- ( ph -> ( F supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) |
| 28 | 0red | |- ( ph -> 0 e. RR ) |
|
| 29 | 11 27 3 28 | suppssr | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( F ` k ) = 0 ) |
| 30 | ssun2 | |- ( G supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) |
|
| 31 | 30 | a1i | |- ( ph -> ( G supp 0 ) C_ ( ( F supp 0 ) u. ( G supp 0 ) ) ) |
| 32 | 15 31 3 28 | suppssr | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( G ` k ) = 0 ) |
| 33 | 29 32 | eqtr4d | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( F ` k ) = ( G ` k ) ) |
| 34 | 25 33 | subeq0bd | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( ( F ` k ) - ( G ` k ) ) = 0 ) |
| 35 | 34 | sq0id | |- ( ( ph /\ k e. ( I \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = 0 ) |
| 36 | 22 35 | syldan | |- ( ( ph /\ k e. ( A \ ( ( F supp 0 ) u. ( G supp 0 ) ) ) ) -> ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = 0 ) |
| 37 | 8 20 36 7 | fsumss | |- ( ph -> sum_ k e. ( ( F supp 0 ) u. ( G supp 0 ) ) ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) = sum_ k e. A ( ( ( F ` k ) - ( G ` k ) ) ^ 2 ) ) |