This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of ( RR ^m X ) for the development of the Lebesgue measure theory for n-dimensional real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxbasefi.x | |- ( ph -> X e. Fin ) |
|
| rrxbasefi.h | |- H = ( RR^ ` X ) |
||
| rrxbasefi.b | |- B = ( Base ` H ) |
||
| Assertion | rrxbasefi | |- ( ph -> B = ( RR ^m X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxbasefi.x | |- ( ph -> X e. Fin ) |
|
| 2 | rrxbasefi.h | |- H = ( RR^ ` X ) |
|
| 3 | rrxbasefi.b | |- B = ( Base ` H ) |
|
| 4 | 2 3 | rrxbase | |- ( X e. Fin -> B = { f e. ( RR ^m X ) | f finSupp 0 } ) |
| 5 | 1 4 | syl | |- ( ph -> B = { f e. ( RR ^m X ) | f finSupp 0 } ) |
| 6 | ssrab2 | |- { f e. ( RR ^m X ) | f finSupp 0 } C_ ( RR ^m X ) |
|
| 7 | 5 6 | eqsstrdi | |- ( ph -> B C_ ( RR ^m X ) ) |
| 8 | simpr | |- ( ( ph /\ f e. ( RR ^m X ) ) -> f e. ( RR ^m X ) ) |
|
| 9 | elmapi | |- ( f e. ( RR ^m X ) -> f : X --> RR ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ f e. ( RR ^m X ) ) -> f : X --> RR ) |
| 11 | 1 | adantr | |- ( ( ph /\ f e. ( RR ^m X ) ) -> X e. Fin ) |
| 12 | c0ex | |- 0 e. _V |
|
| 13 | 12 | a1i | |- ( ( ph /\ f e. ( RR ^m X ) ) -> 0 e. _V ) |
| 14 | 10 11 13 | fdmfifsupp | |- ( ( ph /\ f e. ( RR ^m X ) ) -> f finSupp 0 ) |
| 15 | rabid | |- ( f e. { f e. ( RR ^m X ) | f finSupp 0 } <-> ( f e. ( RR ^m X ) /\ f finSupp 0 ) ) |
|
| 16 | 8 14 15 | sylanbrc | |- ( ( ph /\ f e. ( RR ^m X ) ) -> f e. { f e. ( RR ^m X ) | f finSupp 0 } ) |
| 17 | 5 | eqcomd | |- ( ph -> { f e. ( RR ^m X ) | f finSupp 0 } = B ) |
| 18 | 17 | adantr | |- ( ( ph /\ f e. ( RR ^m X ) ) -> { f e. ( RR ^m X ) | f finSupp 0 } = B ) |
| 19 | 16 18 | eleqtrd | |- ( ( ph /\ f e. ( RR ^m X ) ) -> f e. B ) |
| 20 | 7 19 | eqelssd | |- ( ph -> B = ( RR ^m X ) ) |