This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxdsfi.h | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| rrxdsfi.b | ⊢ 𝐵 = ( ℝ ↑m 𝐼 ) | ||
| Assertion | rrxdsfi | ⊢ ( 𝐼 ∈ Fin → ( dist ‘ 𝐻 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxdsfi.h | ⊢ 𝐻 = ( ℝ^ ‘ 𝐼 ) | |
| 2 | rrxdsfi.b | ⊢ 𝐵 = ( ℝ ↑m 𝐼 ) | |
| 3 | id | ⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐻 ) = ( Base ‘ 𝐻 ) | |
| 5 | 3 1 4 | rrxbasefi | ⊢ ( 𝐼 ∈ Fin → ( Base ‘ 𝐻 ) = ( ℝ ↑m 𝐼 ) ) |
| 6 | 2 5 | eqtr4id | ⊢ ( 𝐼 ∈ Fin → 𝐵 = ( Base ‘ 𝐻 ) ) |
| 7 | 6 | adantr | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ) → 𝐵 = ( Base ‘ 𝐻 ) ) |
| 8 | df-refld | ⊢ ℝfld = ( ℂfld ↾s ℝ ) | |
| 9 | 8 | oveq1i | ⊢ ( ℝfld Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( ( ℂfld ↾s ℝ ) Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) |
| 10 | simp1 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝐼 ∈ Fin ) | |
| 11 | simpr | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ) → 𝑓 ∈ 𝐵 ) | |
| 12 | 11 2 | eleqtrdi | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 ∈ ( ℝ ↑m 𝐼 ) ) |
| 14 | elmapi | ⊢ ( 𝑓 ∈ ( ℝ ↑m 𝐼 ) → 𝑓 : 𝐼 ⟶ ℝ ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑓 : 𝐼 ⟶ ℝ ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑓 ‘ 𝑘 ) ∈ ℝ ) |
| 17 | simpr | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) | |
| 18 | 17 2 | eleqtrdi | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( ℝ ↑m 𝐼 ) ) |
| 19 | 18 | 3adant2 | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( ℝ ↑m 𝐼 ) ) |
| 20 | elmapi | ⊢ ( 𝑔 ∈ ( ℝ ↑m 𝐼 ) → 𝑔 : 𝐼 ⟶ ℝ ) | |
| 21 | 19 20 | syl | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 : 𝐼 ⟶ ℝ ) |
| 22 | 21 | ffvelcdmda | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → ( 𝑔 ‘ 𝑘 ) ∈ ℝ ) |
| 23 | 16 22 | resubcld | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ∈ ℝ ) |
| 24 | 23 | resqcld | ⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ∧ 𝑘 ∈ 𝐼 ) → ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ∈ ℝ ) |
| 25 | 10 24 | regsumfsum | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( ( ℂfld ↾s ℝ ) Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) |
| 26 | 9 25 | eqtr2id | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) = ( ℝfld Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |
| 27 | 26 | fveq2d | ⊢ ( ( 𝐼 ∈ Fin ∧ 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ ( ℝfld Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) |
| 28 | 27 | 3expb | ⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑓 ∈ 𝐵 ∧ 𝑔 ∈ 𝐵 ) ) → ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) = ( √ ‘ ( ℝfld Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) |
| 29 | 6 7 28 | mpoeq123dva | ⊢ ( 𝐼 ∈ Fin → ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) = ( 𝑓 ∈ ( Base ‘ 𝐻 ) , 𝑔 ∈ ( Base ‘ 𝐻 ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) ) |
| 30 | 1 4 | rrxds | ⊢ ( 𝐼 ∈ Fin → ( 𝑓 ∈ ( Base ‘ 𝐻 ) , 𝑔 ∈ ( Base ‘ 𝐻 ) ↦ ( √ ‘ ( ℝfld Σg ( 𝑘 ∈ 𝐼 ↦ ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) ) = ( dist ‘ 𝐻 ) ) |
| 31 | 29 30 | eqtr2d | ⊢ ( 𝐼 ∈ Fin → ( dist ‘ 𝐻 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( √ ‘ Σ 𝑘 ∈ 𝐼 ( ( ( 𝑓 ‘ 𝑘 ) − ( 𝑔 ‘ 𝑘 ) ) ↑ 2 ) ) ) ) |