This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rrgval | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 2 | rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 6 | 5 2 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = 𝐵 ) |
| 7 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = ( .r ‘ 𝑅 ) ) | |
| 8 | 7 3 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( .r ‘ 𝑟 ) = · ) |
| 9 | 8 | oveqd | ⊢ ( 𝑟 = 𝑅 → ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 𝑥 · 𝑦 ) ) |
| 10 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) | |
| 11 | 10 4 | eqtr4di | ⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
| 12 | 9 11 | eqeq12d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) ↔ ( 𝑥 · 𝑦 ) = 0 ) ) |
| 13 | 11 | eqeq2d | ⊢ ( 𝑟 = 𝑅 → ( 𝑦 = ( 0g ‘ 𝑟 ) ↔ 𝑦 = 0 ) ) |
| 14 | 12 13 | imbi12d | ⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) ↔ ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 15 | 6 14 | raleqbidv | ⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) ) ) |
| 16 | 6 15 | rabeqbidv | ⊢ ( 𝑟 = 𝑅 → { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } ) |
| 17 | df-rlreg | ⊢ RLReg = ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } ) | |
| 18 | 2 | fvexi | ⊢ 𝐵 ∈ V |
| 19 | 18 | rabex | ⊢ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } ∈ V |
| 20 | 16 17 19 | fvmpt | ⊢ ( 𝑅 ∈ V → ( RLReg ‘ 𝑅 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } ) |
| 21 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( RLReg ‘ 𝑅 ) = ∅ ) | |
| 22 | fvprc | ⊢ ( ¬ 𝑅 ∈ V → ( Base ‘ 𝑅 ) = ∅ ) | |
| 23 | 2 22 | eqtrid | ⊢ ( ¬ 𝑅 ∈ V → 𝐵 = ∅ ) |
| 24 | 23 | rabeqdv | ⊢ ( ¬ 𝑅 ∈ V → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } = { 𝑥 ∈ ∅ ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } ) |
| 25 | rab0 | ⊢ { 𝑥 ∈ ∅ ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } = ∅ | |
| 26 | 24 25 | eqtrdi | ⊢ ( ¬ 𝑅 ∈ V → { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } = ∅ ) |
| 27 | 21 26 | eqtr4d | ⊢ ( ¬ 𝑅 ∈ V → ( RLReg ‘ 𝑅 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } ) |
| 28 | 20 27 | pm2.61i | ⊢ ( RLReg ‘ 𝑅 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } |
| 29 | 1 28 | eqtri | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } |