This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set ofleft-regular elements in a ring as those elements which are not left zero divisors, meaning that multiplying a nonzero element on the left by a left-regular element gives a nonzero product. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-rlreg | ⊢ RLReg = ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | crlreg | ⊢ RLReg | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | vx | ⊢ 𝑥 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑟 ) |
| 7 | vy | ⊢ 𝑦 | |
| 8 | 3 | cv | ⊢ 𝑥 |
| 9 | cmulr | ⊢ .r | |
| 10 | 5 9 | cfv | ⊢ ( .r ‘ 𝑟 ) |
| 11 | 7 | cv | ⊢ 𝑦 |
| 12 | 8 11 10 | co | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
| 13 | c0g | ⊢ 0g | |
| 14 | 5 13 | cfv | ⊢ ( 0g ‘ 𝑟 ) |
| 15 | 12 14 | wceq | ⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) |
| 16 | 11 14 | wceq | ⊢ 𝑦 = ( 0g ‘ 𝑟 ) |
| 17 | 15 16 | wi | ⊢ ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) |
| 18 | 17 7 6 | wral | ⊢ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) |
| 19 | 18 3 6 | crab | ⊢ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } |
| 20 | 1 2 19 | cmpt | ⊢ ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } ) |
| 21 | 0 20 | wceq | ⊢ RLReg = ( 𝑟 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑟 ) ∣ ∀ 𝑦 ∈ ( Base ‘ 𝑟 ) ( ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) = ( 0g ‘ 𝑟 ) → 𝑦 = ( 0g ‘ 𝑟 ) ) } ) |