This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the set or left-regular elements in a ring. (Contributed by Stefan O'Rear, 22-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | |- E = ( RLReg ` R ) |
|
| rrgval.b | |- B = ( Base ` R ) |
||
| rrgval.t | |- .x. = ( .r ` R ) |
||
| rrgval.z | |- .0. = ( 0g ` R ) |
||
| Assertion | rrgval | |- E = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | |- E = ( RLReg ` R ) |
|
| 2 | rrgval.b | |- B = ( Base ` R ) |
|
| 3 | rrgval.t | |- .x. = ( .r ` R ) |
|
| 4 | rrgval.z | |- .0. = ( 0g ` R ) |
|
| 5 | fveq2 | |- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
|
| 6 | 5 2 | eqtr4di | |- ( r = R -> ( Base ` r ) = B ) |
| 7 | fveq2 | |- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
|
| 8 | 7 3 | eqtr4di | |- ( r = R -> ( .r ` r ) = .x. ) |
| 9 | 8 | oveqd | |- ( r = R -> ( x ( .r ` r ) y ) = ( x .x. y ) ) |
| 10 | fveq2 | |- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
|
| 11 | 10 4 | eqtr4di | |- ( r = R -> ( 0g ` r ) = .0. ) |
| 12 | 9 11 | eqeq12d | |- ( r = R -> ( ( x ( .r ` r ) y ) = ( 0g ` r ) <-> ( x .x. y ) = .0. ) ) |
| 13 | 11 | eqeq2d | |- ( r = R -> ( y = ( 0g ` r ) <-> y = .0. ) ) |
| 14 | 12 13 | imbi12d | |- ( r = R -> ( ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) <-> ( ( x .x. y ) = .0. -> y = .0. ) ) ) |
| 15 | 6 14 | raleqbidv | |- ( r = R -> ( A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) <-> A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) ) ) |
| 16 | 6 15 | rabeqbidv | |- ( r = R -> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } ) |
| 17 | df-rlreg | |- RLReg = ( r e. _V |-> { x e. ( Base ` r ) | A. y e. ( Base ` r ) ( ( x ( .r ` r ) y ) = ( 0g ` r ) -> y = ( 0g ` r ) ) } ) |
|
| 18 | 2 | fvexi | |- B e. _V |
| 19 | 18 | rabex | |- { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } e. _V |
| 20 | 16 17 19 | fvmpt | |- ( R e. _V -> ( RLReg ` R ) = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } ) |
| 21 | fvprc | |- ( -. R e. _V -> ( RLReg ` R ) = (/) ) |
|
| 22 | fvprc | |- ( -. R e. _V -> ( Base ` R ) = (/) ) |
|
| 23 | 2 22 | eqtrid | |- ( -. R e. _V -> B = (/) ) |
| 24 | 23 | rabeqdv | |- ( -. R e. _V -> { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } = { x e. (/) | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } ) |
| 25 | rab0 | |- { x e. (/) | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } = (/) |
|
| 26 | 24 25 | eqtrdi | |- ( -. R e. _V -> { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } = (/) ) |
| 27 | 21 26 | eqtr4d | |- ( -. R e. _V -> ( RLReg ` R ) = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } ) |
| 28 | 20 27 | pm2.61i | |- ( RLReg ` R ) = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } |
| 29 | 1 28 | eqtri | |- E = { x e. B | A. y e. B ( ( x .x. y ) = .0. -> y = .0. ) } |