This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a nonzero ring, the zero is a left zero divisor (that is, not a left-regular element). (Contributed by Thierry Arnoux, 6-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgnz.t | ||
| rrgnz.z | |||
| Assertion | rrgnz |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgnz.t | ||
| 2 | rrgnz.z | ||
| 3 | eqid | ||
| 4 | 3 2 | nzrnz | |
| 5 | 4 | neneqd | |
| 6 | nzrring | ||
| 7 | 6 | adantr | |
| 8 | simpr | ||
| 9 | eqid | ||
| 10 | 9 3 | ringidcl | |
| 11 | 7 10 | syl | |
| 12 | eqid | ||
| 13 | 9 12 2 7 11 | ringlzd | |
| 14 | 1 9 12 2 | rrgeq0 | |
| 15 | 14 | biimpa | |
| 16 | 7 8 11 13 15 | syl31anc | |
| 17 | 5 16 | mtand |