This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | rrgeq0 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrgval.e | ⊢ 𝐸 = ( RLReg ‘ 𝑅 ) | |
| 2 | rrgval.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | rrgval.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 4 | rrgval.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 5 | 1 2 3 4 | rrgeq0i | ⊢ ( ( 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) |
| 6 | 5 | 3adant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 → 𝑌 = 0 ) ) |
| 7 | simp1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → 𝑅 ∈ Ring ) | |
| 8 | 1 2 3 4 | rrgval | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 · 𝑦 ) = 0 → 𝑦 = 0 ) } |
| 9 | 8 | ssrab3 | ⊢ 𝐸 ⊆ 𝐵 |
| 10 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐸 ) | |
| 11 | 9 10 | sselid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 12 | 2 3 4 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| 13 | 7 11 12 | syl2anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 0 ) = 0 ) |
| 14 | oveq2 | ⊢ ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = ( 𝑋 · 0 ) ) | |
| 15 | 14 | eqeq1d | ⊢ ( 𝑌 = 0 → ( ( 𝑋 · 𝑌 ) = 0 ↔ ( 𝑋 · 0 ) = 0 ) ) |
| 16 | 13 15 | syl5ibrcom | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑌 = 0 → ( 𝑋 · 𝑌 ) = 0 ) ) |
| 17 | 6 16 | impbid | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐸 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑋 · 𝑌 ) = 0 ↔ 𝑌 = 0 ) ) |