This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 . (Contributed by AV, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| rnglidl1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | ||
| Assertion | rnglidl1 | ⊢ ( 𝑅 ∈ Rng → 𝐵 ∈ 𝑈 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | ⊢ 𝑈 = ( LIdeal ‘ 𝑅 ) | |
| 2 | rnglidl1.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 3 | 2 | eqimssi | ⊢ 𝐵 ⊆ ( Base ‘ 𝑅 ) |
| 4 | 3 | a1i | ⊢ ( 𝑅 ∈ Rng → 𝐵 ⊆ ( Base ‘ 𝑅 ) ) |
| 5 | rnggrp | ⊢ ( 𝑅 ∈ Rng → 𝑅 ∈ Grp ) | |
| 6 | 2 | grpbn0 | ⊢ ( 𝑅 ∈ Grp → 𝐵 ≠ ∅ ) |
| 7 | 5 6 | syl | ⊢ ( 𝑅 ∈ Rng → 𝐵 ≠ ∅ ) |
| 8 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 9 | 5 | adantr | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 ∈ Grp ) |
| 10 | simpl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑅 ∈ Rng ) | |
| 11 | 2 | eqcomi | ⊢ ( Base ‘ 𝑅 ) = 𝐵 |
| 12 | 11 | eleq2i | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ↔ 𝑥 ∈ 𝐵 ) |
| 13 | 12 | biimpi | ⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) → 𝑥 ∈ 𝐵 ) |
| 14 | 13 | 3ad2ant1 | ⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑥 ∈ 𝐵 ) |
| 16 | simpr2 | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑦 ∈ 𝐵 ) | |
| 17 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 18 | 2 17 | rngcl | ⊢ ( ( 𝑅 ∈ Rng ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 19 | 10 15 16 18 | syl3anc | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ∈ 𝐵 ) |
| 20 | simpr3 | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → 𝑧 ∈ 𝐵 ) | |
| 21 | 2 8 9 19 20 | grpcld | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ) ) → ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 22 | 21 | ralrimivvva | ⊢ ( 𝑅 ∈ Rng → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) |
| 23 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 24 | 1 23 8 17 | islidl | ⊢ ( 𝐵 ∈ 𝑈 ↔ ( 𝐵 ⊆ ( Base ‘ 𝑅 ) ∧ 𝐵 ≠ ∅ ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( ( 𝑥 ( .r ‘ 𝑅 ) 𝑦 ) ( +g ‘ 𝑅 ) 𝑧 ) ∈ 𝐵 ) ) |
| 25 | 4 7 22 24 | syl3anbrc | ⊢ ( 𝑅 ∈ Rng → 𝐵 ∈ 𝑈 ) |