This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 . (Contributed by AV, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | ||
| rnglidl1.b | |||
| Assertion | rnglidl1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | ||
| 2 | rnglidl1.b | ||
| 3 | 2 | eqimssi | |
| 4 | 3 | a1i | |
| 5 | rnggrp | ||
| 6 | 2 | grpbn0 | |
| 7 | 5 6 | syl | |
| 8 | eqid | ||
| 9 | 5 | adantr | |
| 10 | simpl | ||
| 11 | 2 | eqcomi | |
| 12 | 11 | eleq2i | |
| 13 | 12 | biimpi | |
| 14 | 13 | 3ad2ant1 | |
| 15 | 14 | adantl | |
| 16 | simpr2 | ||
| 17 | eqid | ||
| 18 | 2 17 | rngcl | |
| 19 | 10 15 16 18 | syl3anc | |
| 20 | simpr3 | ||
| 21 | 2 8 9 19 20 | grpcld | |
| 22 | 21 | ralrimivvva | |
| 23 | eqid | ||
| 24 | 1 23 8 17 | islidl | |
| 25 | 4 7 22 24 | syl3anbrc |