This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of every non-unital ring is an ideal. For unital rings, such ideals are called "unit ideals", see lidl1 . (Contributed by AV, 19-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| rnglidl1.b | |- B = ( Base ` R ) |
||
| Assertion | rnglidl1 | |- ( R e. Rng -> B e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidl0.u | |- U = ( LIdeal ` R ) |
|
| 2 | rnglidl1.b | |- B = ( Base ` R ) |
|
| 3 | 2 | eqimssi | |- B C_ ( Base ` R ) |
| 4 | 3 | a1i | |- ( R e. Rng -> B C_ ( Base ` R ) ) |
| 5 | rnggrp | |- ( R e. Rng -> R e. Grp ) |
|
| 6 | 2 | grpbn0 | |- ( R e. Grp -> B =/= (/) ) |
| 7 | 5 6 | syl | |- ( R e. Rng -> B =/= (/) ) |
| 8 | eqid | |- ( +g ` R ) = ( +g ` R ) |
|
| 9 | 5 | adantr | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> R e. Grp ) |
| 10 | simpl | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> R e. Rng ) |
|
| 11 | 2 | eqcomi | |- ( Base ` R ) = B |
| 12 | 11 | eleq2i | |- ( x e. ( Base ` R ) <-> x e. B ) |
| 13 | 12 | biimpi | |- ( x e. ( Base ` R ) -> x e. B ) |
| 14 | 13 | 3ad2ant1 | |- ( ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) -> x e. B ) |
| 15 | 14 | adantl | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> x e. B ) |
| 16 | simpr2 | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> y e. B ) |
|
| 17 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 18 | 2 17 | rngcl | |- ( ( R e. Rng /\ x e. B /\ y e. B ) -> ( x ( .r ` R ) y ) e. B ) |
| 19 | 10 15 16 18 | syl3anc | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> ( x ( .r ` R ) y ) e. B ) |
| 20 | simpr3 | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> z e. B ) |
|
| 21 | 2 8 9 19 20 | grpcld | |- ( ( R e. Rng /\ ( x e. ( Base ` R ) /\ y e. B /\ z e. B ) ) -> ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) |
| 22 | 21 | ralrimivvva | |- ( R e. Rng -> A. x e. ( Base ` R ) A. y e. B A. z e. B ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) |
| 23 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 24 | 1 23 8 17 | islidl | |- ( B e. U <-> ( B C_ ( Base ` R ) /\ B =/= (/) /\ A. x e. ( Base ` R ) A. y e. B A. z e. B ( ( x ( .r ` R ) y ) ( +g ` R ) z ) e. B ) ) |
| 25 | 4 7 22 24 | syl3anbrc | |- ( R e. Rng -> B e. U ) |