This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rnghmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | rnghmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rnghmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | rnghmrcl | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( 𝑅 ∈ Rng ∧ 𝑆 ∈ Rng ) ) | |
| 4 | 3 | ancomd | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( 𝑆 ∈ Rng ∧ 𝑅 ∈ Rng ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( 𝑆 ∈ Rng ∧ 𝑅 ∈ Rng ) ) |
| 6 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) | |
| 7 | rnghmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 9 | 1 2 | ghmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) ) |
| 10 | 9 | bicomd | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 11 | 8 10 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 12 | 6 11 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ) |
| 13 | eqidd | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → 𝐹 = 𝐹 ) | |
| 14 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 15 | 14 1 | mgpbas | ⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 16 | 15 | a1i | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) ) |
| 17 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 18 | 17 2 | mgpbas | ⊢ 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) |
| 19 | 18 | a1i | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → 𝐶 = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 20 | 13 16 19 | f1oeq123d | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
| 21 | 20 | biimpa | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) |
| 22 | 14 17 | rnghmmgmhm | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) |
| 23 | 22 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) ) |
| 24 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑅 ) ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) | |
| 25 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) = ( Base ‘ ( mulGrp ‘ 𝑆 ) ) | |
| 26 | 24 25 | mgmhmf1o | ⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) → ( 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ↔ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) ) |
| 27 | 26 | bicomd | ⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MgmHom ( mulGrp ‘ 𝑆 ) ) → ( ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
| 28 | 23 27 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ↔ 𝐹 : ( Base ‘ ( mulGrp ‘ 𝑅 ) ) –1-1-onto→ ( Base ‘ ( mulGrp ‘ 𝑆 ) ) ) ) |
| 29 | 21 28 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) |
| 30 | 12 29 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ∧ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) ) |
| 31 | 17 14 | isrnghmmul | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ↔ ( ( 𝑆 ∈ Rng ∧ 𝑅 ∈ Rng ) ∧ ( ◡ 𝐹 ∈ ( 𝑆 GrpHom 𝑅 ) ∧ ◡ 𝐹 ∈ ( ( mulGrp ‘ 𝑆 ) MgmHom ( mulGrp ‘ 𝑅 ) ) ) ) ) |
| 32 | 5 30 31 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) → ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) |
| 33 | 1 2 | rnghmf | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 34 | 33 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) → 𝐹 : 𝐵 ⟶ 𝐶 ) |
| 35 | 34 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) → 𝐹 Fn 𝐵 ) |
| 36 | 2 1 | rnghmf | ⊢ ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 37 | 36 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) → ◡ 𝐹 : 𝐶 ⟶ 𝐵 ) |
| 38 | 37 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) → ◡ 𝐹 Fn 𝐶 ) |
| 39 | dff1o4 | ⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ( 𝐹 Fn 𝐵 ∧ ◡ 𝐹 Fn 𝐶 ) ) | |
| 40 | 35 38 39 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) → 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) |
| 41 | 32 40 | impbida | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) |