This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A non-unital ring homomorphism is bijective iff its converse is also a non-unital ring homomorphism. (Contributed by AV, 27-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmf1o.b | |- B = ( Base ` R ) |
|
| rnghmf1o.c | |- C = ( Base ` S ) |
||
| Assertion | rnghmf1o | |- ( F e. ( R RngHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S RngHom R ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmf1o.b | |- B = ( Base ` R ) |
|
| 2 | rnghmf1o.c | |- C = ( Base ` S ) |
|
| 3 | rnghmrcl | |- ( F e. ( R RngHom S ) -> ( R e. Rng /\ S e. Rng ) ) |
|
| 4 | 3 | ancomd | |- ( F e. ( R RngHom S ) -> ( S e. Rng /\ R e. Rng ) ) |
| 5 | 4 | adantr | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> ( S e. Rng /\ R e. Rng ) ) |
| 6 | simpr | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> F : B -1-1-onto-> C ) |
|
| 7 | rnghmghm | |- ( F e. ( R RngHom S ) -> F e. ( R GrpHom S ) ) |
|
| 8 | 7 | adantr | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> F e. ( R GrpHom S ) ) |
| 9 | 1 2 | ghmf1o | |- ( F e. ( R GrpHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S GrpHom R ) ) ) |
| 10 | 9 | bicomd | |- ( F e. ( R GrpHom S ) -> ( `' F e. ( S GrpHom R ) <-> F : B -1-1-onto-> C ) ) |
| 11 | 8 10 | syl | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F e. ( S GrpHom R ) <-> F : B -1-1-onto-> C ) ) |
| 12 | 6 11 | mpbird | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> `' F e. ( S GrpHom R ) ) |
| 13 | eqidd | |- ( F e. ( R RngHom S ) -> F = F ) |
|
| 14 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 15 | 14 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
| 16 | 15 | a1i | |- ( F e. ( R RngHom S ) -> B = ( Base ` ( mulGrp ` R ) ) ) |
| 17 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 18 | 17 2 | mgpbas | |- C = ( Base ` ( mulGrp ` S ) ) |
| 19 | 18 | a1i | |- ( F e. ( R RngHom S ) -> C = ( Base ` ( mulGrp ` S ) ) ) |
| 20 | 13 16 19 | f1oeq123d | |- ( F e. ( R RngHom S ) -> ( F : B -1-1-onto-> C <-> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) ) |
| 21 | 20 | biimpa | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) |
| 22 | 14 17 | rnghmmgmhm | |- ( F e. ( R RngHom S ) -> F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) |
| 23 | 22 | adantr | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) ) |
| 24 | eqid | |- ( Base ` ( mulGrp ` R ) ) = ( Base ` ( mulGrp ` R ) ) |
|
| 25 | eqid | |- ( Base ` ( mulGrp ` S ) ) = ( Base ` ( mulGrp ` S ) ) |
|
| 26 | 24 25 | mgmhmf1o | |- ( F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) -> ( F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) <-> `' F e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` R ) ) ) ) |
| 27 | 26 | bicomd | |- ( F e. ( ( mulGrp ` R ) MgmHom ( mulGrp ` S ) ) -> ( `' F e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` R ) ) <-> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) ) |
| 28 | 23 27 | syl | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` R ) ) <-> F : ( Base ` ( mulGrp ` R ) ) -1-1-onto-> ( Base ` ( mulGrp ` S ) ) ) ) |
| 29 | 21 28 | mpbird | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> `' F e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` R ) ) ) |
| 30 | 12 29 | jca | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> ( `' F e. ( S GrpHom R ) /\ `' F e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` R ) ) ) ) |
| 31 | 17 14 | isrnghmmul | |- ( `' F e. ( S RngHom R ) <-> ( ( S e. Rng /\ R e. Rng ) /\ ( `' F e. ( S GrpHom R ) /\ `' F e. ( ( mulGrp ` S ) MgmHom ( mulGrp ` R ) ) ) ) ) |
| 32 | 5 30 31 | sylanbrc | |- ( ( F e. ( R RngHom S ) /\ F : B -1-1-onto-> C ) -> `' F e. ( S RngHom R ) ) |
| 33 | 1 2 | rnghmf | |- ( F e. ( R RngHom S ) -> F : B --> C ) |
| 34 | 33 | adantr | |- ( ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) -> F : B --> C ) |
| 35 | 34 | ffnd | |- ( ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) -> F Fn B ) |
| 36 | 2 1 | rnghmf | |- ( `' F e. ( S RngHom R ) -> `' F : C --> B ) |
| 37 | 36 | adantl | |- ( ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) -> `' F : C --> B ) |
| 38 | 37 | ffnd | |- ( ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) -> `' F Fn C ) |
| 39 | dff1o4 | |- ( F : B -1-1-onto-> C <-> ( F Fn B /\ `' F Fn C ) ) |
|
| 40 | 35 38 39 | sylanbrc | |- ( ( F e. ( R RngHom S ) /\ `' F e. ( S RngHom R ) ) -> F : B -1-1-onto-> C ) |
| 41 | 32 40 | impbida | |- ( F e. ( R RngHom S ) -> ( F : B -1-1-onto-> C <-> `' F e. ( S RngHom R ) ) ) |