This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism of non-unital rings is a bijective homomorphism. (Contributed by AV, 23-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rnghmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| rnghmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | ||
| Assertion | isrngim2 | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnghmf1o.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | rnghmf1o.c | ⊢ 𝐶 = ( Base ‘ 𝑆 ) | |
| 3 | isrngim | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) ) | |
| 4 | 1 2 | rnghmf1o | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( 𝐹 : 𝐵 –1-1-onto→ 𝐶 ↔ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ) |
| 5 | 4 | bicomd | ⊢ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) |
| 6 | 5 | a1i | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) → ( ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ↔ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
| 7 | 6 | pm5.32d | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ ◡ 𝐹 ∈ ( 𝑆 RngHom 𝑅 ) ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |
| 8 | 3 7 | bitrd | ⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ) → ( 𝐹 ∈ ( 𝑅 RngIso 𝑆 ) ↔ ( 𝐹 ∈ ( 𝑅 RngHom 𝑆 ) ∧ 𝐹 : 𝐵 –1-1-onto→ 𝐶 ) ) ) |