This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The "inclusion functor" from a subcategory of a category into the category itself. (Contributed by AV, 30-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | inclfusubc.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| inclfusubc.s | ⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) | ||
| inclfusubc.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| inclfusubc.f | ⊢ ( 𝜑 → 𝐹 = ( I ↾ 𝐵 ) ) | ||
| inclfusubc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) ) | ||
| Assertion | inclfusubc | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Func 𝐶 ) 𝐺 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inclfusubc.j | ⊢ ( 𝜑 → 𝐽 ∈ ( Subcat ‘ 𝐶 ) ) | |
| 2 | inclfusubc.s | ⊢ 𝑆 = ( 𝐶 ↾cat 𝐽 ) | |
| 3 | inclfusubc.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 4 | inclfusubc.f | ⊢ ( 𝜑 → 𝐹 = ( I ↾ 𝐵 ) ) | |
| 5 | inclfusubc.g | ⊢ ( 𝜑 → 𝐺 = ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) ) | |
| 6 | fthfunc | ⊢ ( 𝑆 Faith 𝐶 ) ⊆ ( 𝑆 Func 𝐶 ) | |
| 7 | eqid | ⊢ ( idfunc ‘ 𝑆 ) = ( idfunc ‘ 𝑆 ) | |
| 8 | 2 7 | rescfth | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Faith 𝐶 ) ) |
| 9 | 1 8 | syl | ⊢ ( 𝜑 → ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Faith 𝐶 ) ) |
| 10 | 6 9 | sselid | ⊢ ( 𝜑 → ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Func 𝐶 ) ) |
| 11 | df-br | ⊢ ( 𝐹 ( 𝑆 Func 𝐶 ) 𝐺 ↔ 〈 𝐹 , 𝐺 〉 ∈ ( 𝑆 Func 𝐶 ) ) | |
| 12 | 4 5 | opeq12d | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
| 13 | 2 7 3 | idfusubc | ⊢ ( 𝐽 ∈ ( Subcat ‘ 𝐶 ) → ( idfunc ‘ 𝑆 ) = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
| 14 | 1 13 | syl | ⊢ ( 𝜑 → ( idfunc ‘ 𝑆 ) = 〈 ( I ↾ 𝐵 ) , ( 𝑥 ∈ 𝐵 , 𝑦 ∈ 𝐵 ↦ ( I ↾ ( 𝑥 𝐽 𝑦 ) ) ) 〉 ) |
| 15 | 12 14 | eqtr4d | ⊢ ( 𝜑 → 〈 𝐹 , 𝐺 〉 = ( idfunc ‘ 𝑆 ) ) |
| 16 | 15 | eleq1d | ⊢ ( 𝜑 → ( 〈 𝐹 , 𝐺 〉 ∈ ( 𝑆 Func 𝐶 ) ↔ ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Func 𝐶 ) ) ) |
| 17 | 11 16 | bitrid | ⊢ ( 𝜑 → ( 𝐹 ( 𝑆 Func 𝐶 ) 𝐺 ↔ ( idfunc ‘ 𝑆 ) ∈ ( 𝑆 Func 𝐶 ) ) ) |
| 18 | 10 17 | mpbird | ⊢ ( 𝜑 → 𝐹 ( 𝑆 Func 𝐶 ) 𝐺 ) |