This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity arrow in the category of non-unital rings is the identity function. (Contributed by AV, 27-Feb-2020) (Revised by AV, 10-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngccat.c | |- C = ( RngCat ` U ) |
|
| rngcid.b | |- B = ( Base ` C ) |
||
| rngcid.o | |- .1. = ( Id ` C ) |
||
| rngcid.u | |- ( ph -> U e. V ) |
||
| rngcid.x | |- ( ph -> X e. B ) |
||
| rngcid.s | |- S = ( Base ` X ) |
||
| Assertion | rngcid | |- ( ph -> ( .1. ` X ) = ( _I |` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngccat.c | |- C = ( RngCat ` U ) |
|
| 2 | rngcid.b | |- B = ( Base ` C ) |
|
| 3 | rngcid.o | |- .1. = ( Id ` C ) |
|
| 4 | rngcid.u | |- ( ph -> U e. V ) |
|
| 5 | rngcid.x | |- ( ph -> X e. B ) |
|
| 6 | rngcid.s | |- S = ( Base ` X ) |
|
| 7 | eqidd | |- ( ph -> ( U i^i Rng ) = ( U i^i Rng ) ) |
|
| 8 | eqidd | |- ( ph -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
|
| 9 | 1 4 7 8 | rngcval | |- ( ph -> C = ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) ) |
| 10 | 9 | fveq2d | |- ( ph -> ( Id ` C ) = ( Id ` ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) ) ) |
| 11 | 3 10 | eqtrid | |- ( ph -> .1. = ( Id ` ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) ) ) |
| 12 | 11 | fveq1d | |- ( ph -> ( .1. ` X ) = ( ( Id ` ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) ) ` X ) ) |
| 13 | eqid | |- ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
|
| 14 | eqid | |- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
|
| 15 | incom | |- ( U i^i Rng ) = ( Rng i^i U ) |
|
| 16 | 15 | a1i | |- ( ph -> ( U i^i Rng ) = ( Rng i^i U ) ) |
| 17 | 14 4 16 8 | rnghmsubcsetc | |- ( ph -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
| 18 | 7 8 | rnghmresfn | |- ( ph -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) Fn ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) |
| 19 | eqid | |- ( Id ` ( ExtStrCat ` U ) ) = ( Id ` ( ExtStrCat ` U ) ) |
|
| 20 | 1 2 4 | rngcbas | |- ( ph -> B = ( U i^i Rng ) ) |
| 21 | 20 | eleq2d | |- ( ph -> ( X e. B <-> X e. ( U i^i Rng ) ) ) |
| 22 | 5 21 | mpbid | |- ( ph -> X e. ( U i^i Rng ) ) |
| 23 | 13 17 18 19 22 | subcid | |- ( ph -> ( ( Id ` ( ExtStrCat ` U ) ) ` X ) = ( ( Id ` ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) ) ` X ) ) |
| 24 | elinel1 | |- ( X e. ( U i^i Rng ) -> X e. U ) |
|
| 25 | 21 24 | biimtrdi | |- ( ph -> ( X e. B -> X e. U ) ) |
| 26 | 5 25 | mpd | |- ( ph -> X e. U ) |
| 27 | 14 19 4 26 | estrcid | |- ( ph -> ( ( Id ` ( ExtStrCat ` U ) ) ` X ) = ( _I |` ( Base ` X ) ) ) |
| 28 | 6 | eqcomi | |- ( Base ` X ) = S |
| 29 | 28 | a1i | |- ( ph -> ( Base ` X ) = S ) |
| 30 | 29 | reseq2d | |- ( ph -> ( _I |` ( Base ` X ) ) = ( _I |` S ) ) |
| 31 | 27 30 | eqtrd | |- ( ph -> ( ( Id ` ( ExtStrCat ` U ) ) ` X ) = ( _I |` S ) ) |
| 32 | 12 23 31 | 3eqtr2d | |- ( ph -> ( .1. ` X ) = ( _I |` S ) ) |