This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of rnco as of 24-Jan-2026. (Contributed by NM, 12-Dec-2006) (Proof shortened by Peter Mazsa, 2-Oct-2022) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rncoOLD | ⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | ⊢ 𝑥 ∈ V | |
| 2 | vex | ⊢ 𝑦 ∈ V | |
| 3 | 1 2 | brco | ⊢ ( 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 4 | 3 | exbii | ⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 5 | excom | ⊢ ( ∃ 𝑥 ∃ 𝑧 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) | |
| 6 | vex | ⊢ 𝑧 ∈ V | |
| 7 | 6 | elrn | ⊢ ( 𝑧 ∈ ran 𝐵 ↔ ∃ 𝑥 𝑥 𝐵 𝑧 ) |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) |
| 9 | 2 | brresi | ⊢ ( 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ↔ ( 𝑧 ∈ ran 𝐵 ∧ 𝑧 𝐴 𝑦 ) ) |
| 10 | 19.41v | ⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ( ∃ 𝑥 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ) | |
| 11 | 8 9 10 | 3bitr4ri | ⊢ ( ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑥 ( 𝑥 𝐵 𝑧 ∧ 𝑧 𝐴 𝑦 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 13 | 4 5 12 | 3bitri | ⊢ ( ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 14 | 2 | elrn | ⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ ∃ 𝑥 𝑥 ( 𝐴 ∘ 𝐵 ) 𝑦 ) |
| 15 | 2 | elrn | ⊢ ( 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ↔ ∃ 𝑧 𝑧 ( 𝐴 ↾ ran 𝐵 ) 𝑦 ) |
| 16 | 13 14 15 | 3bitr4i | ⊢ ( 𝑦 ∈ ran ( 𝐴 ∘ 𝐵 ) ↔ 𝑦 ∈ ran ( 𝐴 ↾ ran 𝐵 ) ) |
| 17 | 16 | eqriv | ⊢ ran ( 𝐴 ∘ 𝐵 ) = ran ( 𝐴 ↾ ran 𝐵 ) |