This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of rmoanim , shorter but requiring ax-10 and ax-11 . (Contributed by Alexander van der Vekens, 25-Jun-2017) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmoanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | rmoanimALT | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 4 | 1 | r19.21 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 5 | 3 4 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 7 | nfv | ⊢ Ⅎ 𝑦 ( 𝜑 ∧ 𝜓 ) | |
| 8 | 7 | rmo2 | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 9 | nfv | ⊢ Ⅎ 𝑦 𝜓 | |
| 10 | 9 | rmo2 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 11 | 10 | imbi2i | ⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 12 | 19.37v | ⊢ ( ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) | |
| 13 | 11 12 | bitr4i | ⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 14 | 6 8 13 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ) |