This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduction of a conjunct into restricted unique existential quantifier, analogous to euan . (Contributed by Alexander van der Vekens, 2-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmoanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | reuan | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | simpl | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) | |
| 3 | 2 | a1i | ⊢ ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝜑 ) ) |
| 4 | 1 3 | rexlimi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → 𝜑 ) |
| 5 | 4 | adantr | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) → 𝜑 ) |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝜓 ) | |
| 7 | 6 | reximi | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
| 8 | 7 | adantr | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) → ∃ 𝑥 ∈ 𝐴 𝜓 ) |
| 9 | nfre1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) | |
| 10 | 4 | adantr | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → 𝜑 ) |
| 11 | 10 | a1d | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜑 ) ) |
| 12 | 11 | ancrd | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → ( 𝜑 ∧ 𝜓 ) ) ) |
| 13 | 6 12 | impbid2 | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝜑 ∧ 𝜓 ) ↔ 𝜓 ) ) |
| 14 | 9 13 | rmobida | ⊢ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃* 𝑥 ∈ 𝐴 𝜓 ) ) |
| 15 | 14 | biimpa | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) → ∃* 𝑥 ∈ 𝐴 𝜓 ) |
| 16 | 5 8 15 | jca32 | ⊢ ( ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) → ( 𝜑 ∧ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃* 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 17 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( ∃ 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ∧ ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) | |
| 18 | reu5 | ⊢ ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃* 𝑥 ∈ 𝐴 𝜓 ) ) | |
| 19 | 18 | anbi2i | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝜑 ∧ ( ∃ 𝑥 ∈ 𝐴 𝜓 ∧ ∃* 𝑥 ∈ 𝐴 𝜓 ) ) ) |
| 20 | 16 17 19 | 3imtr4i | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) → ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ) |
| 21 | ibar | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 ↔ ( 𝜑 ∧ 𝜓 ) ) ) |
| 23 | 1 22 | reubida | ⊢ ( 𝜑 → ( ∃! 𝑥 ∈ 𝐴 𝜓 ↔ ∃! 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) → ∃! 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ) |
| 25 | 20 24 | impbii | ⊢ ( ∃! 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 ∧ ∃! 𝑥 ∈ 𝐴 𝜓 ) ) |