This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Introduction of a conjunct into restricted "at most one" quantifier, analogous to moanim . (Contributed by Alexander van der Vekens, 25-Jun-2017) Avoid ax-10 and ax-11 . (Revised by GG, 24-Aug-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmoanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| Assertion | rmoanim | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoanim.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | impexp | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) | |
| 3 | 2 | ralbii | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 4 | 1 | r19.21 | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 5 | 3 4 | bitri | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 6 | 5 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 7 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ) | |
| 8 | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ) | |
| 9 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) | |
| 10 | 9 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) |
| 11 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) ) | |
| 12 | 10 11 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 13 | 12 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ ( 𝜑 ∧ 𝜓 ) ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 14 | 7 8 13 | 3bitri | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( ( 𝜑 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) |
| 15 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) | |
| 16 | df-mo | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ) | |
| 17 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) | |
| 18 | 17 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 19 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜓 → 𝑥 = 𝑦 ) ) ) | |
| 20 | 18 19 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 21 | 20 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 22 | 15 16 21 | 3bitri | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜓 ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) |
| 23 | 22 | imbi2i | ⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 24 | 19.37v | ⊢ ( ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ↔ ( 𝜑 → ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) | |
| 25 | 23 24 | bitr4i | ⊢ ( ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ↔ ∃ 𝑦 ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝑥 = 𝑦 ) ) ) |
| 26 | 6 14 25 | 3bitr4i | ⊢ ( ∃* 𝑥 ∈ 𝐴 ( 𝜑 ∧ 𝜓 ) ↔ ( 𝜑 → ∃* 𝑥 ∈ 𝐴 𝜓 ) ) |