This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of rmoanim , shorter but requiring ax-10 and ax-11 . (Contributed by Alexander van der Vekens, 25-Jun-2017) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmoanim.1 | |- F/ x ph |
|
| Assertion | rmoanimALT | |- ( E* x e. A ( ph /\ ps ) <-> ( ph -> E* x e. A ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoanim.1 | |- F/ x ph |
|
| 2 | impexp | |- ( ( ( ph /\ ps ) -> x = y ) <-> ( ph -> ( ps -> x = y ) ) ) |
|
| 3 | 2 | ralbii | |- ( A. x e. A ( ( ph /\ ps ) -> x = y ) <-> A. x e. A ( ph -> ( ps -> x = y ) ) ) |
| 4 | 1 | r19.21 | |- ( A. x e. A ( ph -> ( ps -> x = y ) ) <-> ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 5 | 3 4 | bitri | |- ( A. x e. A ( ( ph /\ ps ) -> x = y ) <-> ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 6 | 5 | exbii | |- ( E. y A. x e. A ( ( ph /\ ps ) -> x = y ) <-> E. y ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 7 | nfv | |- F/ y ( ph /\ ps ) |
|
| 8 | 7 | rmo2 | |- ( E* x e. A ( ph /\ ps ) <-> E. y A. x e. A ( ( ph /\ ps ) -> x = y ) ) |
| 9 | nfv | |- F/ y ps |
|
| 10 | 9 | rmo2 | |- ( E* x e. A ps <-> E. y A. x e. A ( ps -> x = y ) ) |
| 11 | 10 | imbi2i | |- ( ( ph -> E* x e. A ps ) <-> ( ph -> E. y A. x e. A ( ps -> x = y ) ) ) |
| 12 | 19.37v | |- ( E. y ( ph -> A. x e. A ( ps -> x = y ) ) <-> ( ph -> E. y A. x e. A ( ps -> x = y ) ) ) |
|
| 13 | 11 12 | bitr4i | |- ( ( ph -> E* x e. A ps ) <-> E. y ( ph -> A. x e. A ( ps -> x = y ) ) ) |
| 14 | 6 8 13 | 3bitr4i | |- ( E* x e. A ( ph /\ ps ) <-> ( ph -> E* x e. A ps ) ) |