This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of restricted "at most one". Note that E* x e. A ph is not equivalent to E. y e. A A. x e. A ( ph -> x = y ) (in analogy to reu6 ); to see this, let A be the empty set. However, one direction of this pattern holds; see rmo2i . (Contributed by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rmo2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| Assertion | rmo2 | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmo2.1 | ⊢ Ⅎ 𝑦 𝜑 | |
| 2 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ) | |
| 3 | nfv | ⊢ Ⅎ 𝑦 𝑥 ∈ 𝐴 | |
| 4 | 3 1 | nfan | ⊢ Ⅎ 𝑦 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) |
| 5 | 4 | mof | ⊢ ( ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) ↔ ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ) |
| 6 | impexp | ⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) | |
| 7 | 6 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) |
| 8 | df-ral | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝑥 = 𝑦 ) ) ) | |
| 9 | 7 8 | bitr4i | ⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 10 | 9 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → 𝑥 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |
| 11 | 2 5 10 | 3bitri | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝜑 ↔ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝑥 = 𝑦 ) ) |